

# REPORT

# Town of Bon Accord

# Stormwater Master Plan





OCTOBER 2019





Platinum member

A Carbon Neutral Company

### CONFIDENTIALITY AND © COPYRIGHT

This document is for the sole use of the addressee and Associated Engineering Alberta Ltd. The document contains proprietary and confidential information that shall not be reproduced in any manner or disclosed to or discussed with any other parties without the express written permission of Associated Engineering Alberta Ltd. Information in this document is to be considered the intellectual property of Associated Engineering Alberta Ltd. in accordance with Canadian copyright law.

This report was prepared by Associated Engineering Alberta Ltd. for the account of Town of Bon Accord. The material in it reflects Associated Engineering Alberta Ltd.'s best judgement, in the light of the information available to it, at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Associated Engineering Alberta Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

# **EXECUTIVE SUMMARY**

The Town of Bon Accord (the Town) currently operates and maintains a stormwater drainage system. This system is comprised of ditches and culverts, which convey overland flow, and underground storm pipes to capture flows. Typically, the major system is comprised of infrastructure that conveys overland stormwater runoff (ditches, culverts) and the minor system includes underground infrastructure (storm pipes). It is evident that the existing stormwater infrastructure is not performing to its design intent, as the Town has been experiencing surface water drainage issues, ponding and localized flooding at various locations within the Town.



Surface water ponding in residential neighbourhood (March 2019)

Previous drainage studies, including a Drainage Study completed by UMA in 2005, identified existing drainage issues within the Town and provided general mitigation solutions. The Town retained Associated Engineering to complete a Stormwater

Master Plan in April 2019 to identify existing drainage issues, provide mitigation options and develop a stormwater management plan for future development.

Associated Engineering undertook the following tasks to complete the Stormwater Master Plan:

- Background review of existing reports and as-built drawings;
- Reviewed various design standards and provided a recommendation;
- Assessed the existing minor and major systems within the Town, based on the current land use;
- Identified existing drainage issues and proposed upgrades;
- Assessed the minor and major systems, based on the future development;
- Assessed proposed upgrades based on future development;
- Developed a stormwater management plan for future development; and,
- Provided preliminary cost estimates (Class D) for proposed system upgrades.

There are three existing natural areas located in the Town boundary. These natural areas act as stormwater management facilities, as they collect and store stormwater runoff from the existing development and the undeveloped lands, to the north and west of the Town, before facilitating drainage towards the Sturgeon River. Only one of the natural areas (Natural Area 3) has an outlet, which discharges north towards the CNR line. The basins convey stormwater runoff through the storm pipes and the ditches and culverts.

The catchment areas for the minor and major systems were delineated using LiDAR data and the Rational Method was used to estimate the flows discharging into the systems. The results from the assessment of the existing minor and major systems concluded that the majority of the Town's stormwater infrastructure does not have capacity to convey flows generated from design storm events. Therefore, recommendations were made to upgrade sections of storm pipes within the minor system and culverts within the major system.

Future development is proposed within the undeveloped lands located north and west of the Town. Based on the proposed future land use, no flows from future developments will discharge into the existing minor system. Culverts within the upgraded major system were assessed based on flows generated from future developments contributing

into the existing systems. Assessment results showed that most upgraded culverts within the existing system have capacity. If the Town carries out the proposed existing system upgrades, it is advantageous to upgrade all culverts for the ultimate development. A preliminary Class D cost estimate for upgrades to the existing minor and major systems was generated. A total of \$3,120,000 was estimated to undertake the improvements.

All future development will require an on-site minor stormwater system and a major stormwater system. To mitigate any impacts on the drainage systems within the area, due to the proposed development, the Town requires stormwater management facilities. The stormwater management facilities will allow system discharge rates to be controlled to the recommended release rate of 6 L/s/ha. The future stormwater management concept for the Town consists of 9 stormwater management facilities.

To mitigate existing issues within the natural areas and to ensure the areas do not have negative impacts on future development and the downstream, improvements are required. All three natural areas are proposed to have control structures to ensure a release rate of 6 L/s/ha and have a normal water level established, based on property line and minimum freeboard.

PAGE NO.

# TABLE OF CONTENTS

SECTION

| Executive Summary |                                      |                                                               |     |  |  |
|-------------------|--------------------------------------|---------------------------------------------------------------|-----|--|--|
| Table of Contents |                                      |                                                               |     |  |  |
| List of           | Tables                               |                                                               | ii  |  |  |
| List of           | Figures                              |                                                               | iii |  |  |
| 1                 | Introd                               | uction                                                        | 1-1 |  |  |
|                   | 1.1                                  | Background Review                                             | 1-1 |  |  |
|                   | 1.2                                  | Existing and Future Developments                              | 1-2 |  |  |
| 2                 | Desigr                               | n Criteria                                                    | 2-5 |  |  |
|                   | 2.1                                  | Minor System                                                  | 2-5 |  |  |
|                   | 2.2                                  | Major System                                                  | 2-7 |  |  |
| 3                 | Existin                              | ng Drainage Assessment                                        | 3-1 |  |  |
|                   | 3.1                                  | Minor System Assessment                                       | 3-2 |  |  |
|                   | 3.2                                  | Major System Assessment                                       | 3-4 |  |  |
| 4                 | Future                               | e Stormwater Management Plan                                  | 4-1 |  |  |
|                   | 4.1                                  | Minor System                                                  | 4-1 |  |  |
|                   | 4.2                                  | Major System                                                  | 4-1 |  |  |
|                   | 4.3                                  | Snow Management                                               | 4-5 |  |  |
| 5                 | Cost E                               | stimate                                                       | 5-1 |  |  |
|                   | 5.1                                  | Proposed Upgrades – Existing System                           | 5-1 |  |  |
| 6                 | 6 Conclusions and Recommendations 6- |                                                               |     |  |  |
| Closur            | е                                    |                                                               |     |  |  |
| Appen             | dix A - S                            | Stormwater Master Plan - Proposed Design Standards Memorandum |     |  |  |
|                   |                                      |                                                               |     |  |  |

- Appendix B LiDAR Boundaries and Catchment Areas (Figure B-1)
- Appendix C Existing Minor System Assessment Detailed Calculations
- Appendix D Proposed Upgrades to Existing Minor System Detailed Calculations
- Appendix E Existing Major System Assessment Detailed Calculations
- Appendix F Future Major System Assessment Detailed Calculations
- Appendix G Preliminary Cost Estimate

# LIST OF TABLES

PAGE NO.

| Table 2-1 Minor System Design Basis                                         | 2-5 |
|-----------------------------------------------------------------------------|-----|
| Table 2-2 Minor System Runoff Coefficients                                  | 2-6 |
| Table 2-3 City of Edmonton Design and Construction Standards – Minor System | 2-6 |
| Table 2-4 Major System Runoff Coefficients                                  | 2-7 |
| Table 3-1 Drainage Basin Summary                                            | 3-1 |
| Table 3-2 Existing Minor System Assessment                                  | 3-2 |
| Table 3-3 Proposed Upgrades to Existing Minor System                        | 3-3 |
| Table 3-4 Existing Major System Assessment                                  | 3-5 |
| Table 3-5 Proposed Upgrades to Existing Major System                        | 3-6 |
| Table 4-1 Future Major System Assessment                                    | 4-1 |
| Table 4-2 Proposed Upgrades to Future Major System                          | 4-2 |
| Table 4-3 Proposed Stormwater Management Facility Characteristics           | 4-3 |
| Table 5-1 Existing System Upgrades – Cost Estimate                          | 5-1 |
|                                                                             |     |

PAGE NO.

# LIST OF FIGURES

| 1-1  |
|------|
| 1-3  |
| 1-4  |
| 3-8  |
| 3-9  |
| 3-10 |
| 3-11 |
| 3-12 |
| 3-13 |
| 4-6  |
| 4-7  |
| 4-8  |
|      |

# 1 INTRODUCTION

# 1.1 Background Review

The Town of Bon Accord (the Town) is located approximately 40 km north of Downtown Edmonton on Highway 28. The current Town limits encompass approximately six quarter sections, as shown in **Figure 1-1**. The existing development is primarily within SW-18-56-23-4 and SE-18-56-23-4.



### Figure 1-1 Town of Bon Accord

The Town currently operates and maintains a stormwater drainage system. This system is comprised of ditches and culverts, which convey overland flow, and storm pipes to capture flows. Typically, the major system is comprised of infrastructure that conveys overland stormwater runoff (ditches, culverts) and the minor system includes underground infrastructure (storm pipes). It is evident that the existing stormwater infrastructure is not performing to its design intent, as the Town has been experiencing surface water drainage issues, ponding and localized flooding at various locations within the Town.

Previous drainage studies, including a Drainage Study completed by UMA in 2005, identified existing drainage issues within the Town and provided general mitigation solutions. In addition, no stormwater management plan has been developed for the future development. The Town retained Associated Engineering to complete a Stormwater Master Plan to identify existing drainage issues, provide mitigation options and develop a stormwater management plan for the Town and future development.

Associated Engineering reviewed available design reports and completed a site visit with Town personnel in March 2019 to better understand the existing issues. Examples of findings during the review and site visit include the following:

- The topography within the Town is generally flat and has limited grade within the ditches;
- During storm events and spring melt, flooding has been observed at the following locations:
  - Roadway along 51<sup>st</sup> Avenue and segments along the west ditch of 52<sup>nd</sup> Street; and,
  - North ditch along 51<sup>st</sup> Avenue from 56<sup>th</sup> Street to 53<sup>rd</sup> Street.
- There are several ditches, and culverts, that are undersized and are unable to convey flows during design storm events; and,
- Due to limited grade and capacity, stormwater runoff accumulates within the ditch network and causes overtopping of sidewalks and roadways.

Some areas of concern for surface water ponding are highlighted in **Figure 1-2**, which are located within the low sections within the Town. Although surface water ponding has occurred within residential neighbourhoods, the Town has not received any complaints about basement flooding. Only flooding up to property lines has been reported.

## 1.2 Existing and Future Developments

The existing land use within the current development was based on the 2016 Town of Bon Accord Land Use Bylaw. The future development land use was based on the "Meadows of Bon Accord Servicing Study" (Stantec, 2007), and "Annexation Servicing Study" (MPE Engineering, 2016) illustrated in **Figure 1-3**. Note that the Town recently annexed three quarter sections of land, located west of the existing development, in NE-13-56-24-W4, NW-18-56-23-W4 and SE-13-56-24-W4.



Ponding in ditch network (March 2019)





# 2 DESIGN CRITERIA

As part of this project, Associated Engineering completed a review of the Town's stormwater design standards. In addition, the following design standards were also reviewed:

- Alberta Environment and Parks Stormwater Management Guidelines for the Province of Alberta;
- City of Edmonton Design and Construction Standards;
- Municipal Engineering Standards City of St. Albert; and,
- Sturgeon County General Municipal Servicing Standards.

Based on the review and discussion with the Town, Associated Engineering recommended that the Town adopt the City of Edmonton Design and Construction Standards (March 2015). This recommendation was based on the following:

- The proximity of the Town to the City of Edmonton;
- Nearby communities, such as St. Albert and Sturgeon County, have design criteria similar to City of Edmonton standards;
- The City of Edmonton Standards were recently updated in 2015; and,
- The City of Edmonton is using Intensity Duration Frequency (IDF) curves developed in 2018.

A design standards memorandum was submitted to the Town and is provided in **Appendix A**. A summary of the City of Edmonton's design standards used for this study is provided below.

## 2.1 Minor System

Storm drainage system elements should be designed to accommodate runoff flow rates and volumes as shown in **Table 2-1**.

Table 2-1 Minor System Design Basis

| System Elements                                                       | Design Basis (Rainfall Return Period) |
|-----------------------------------------------------------------------|---------------------------------------|
| Minor drainage system components servicing areas of 30 ha and less    | 5 years                               |
| Minor drainage system trunk sewers servicing areas greater than 30 ha | 5 year runoff rate plus 25%           |

The Rational Method was used to estimate runoff flow rates. The rational formula is expressed as:

Q<sub>5</sub> = CIA/360

Where:

- $Q_5$  = Runoff generated by a storm with a return period of 5 years (m<sup>3</sup>/s)
- C = Runoff coefficient as per City of Edmonton Zoning Bylaw 12800 (refer to Table 2-2)

- I = Rainfall intensity as per the 2018 EPCOR IDF curves (mm/hr)
- A = Drainage area (ha)

Table A6, in Section 13 of the City of Edmonton Design and Construction Standards, was used to determine the time of concentration for each catchment area.

| Land Use                   | Minor System Runoff Coefficients |
|----------------------------|----------------------------------|
| Industrial                 | 0.60                             |
| Commercial                 | 0.60                             |
| Public Utility             | 0.75                             |
| Park/Open Space/ER         | 0.10                             |
| Low Density Residential    | 0.50                             |
| Medium Density Residential | 0.75                             |
| Institutional              | 0.30                             |
| Natural Area               | 0.01                             |
| Roadways                   | 0.95                             |
|                            |                                  |

Table 2-2Minor System Runoff Coefficients

Table 2-3 presents the design criteria for other parameters used to assess the existing minor system.

Parameter Value Manning's roughness coefficient, n 0.013 Velocity Minimum • 0.6 m/s Maximum 3.0 m/s • **Minimum Slopes** 200 mm diameter • 0.40% 250 mm diameter 0.28% 300 mm diameter 0.22% 375 mm diameter 0.15% • 450 mm diameter 0.12% • 525 mm diameter and larger 0.10% • Minimum Cover 2.0 m

 Table 2-3

 City of Edmonton Design and Construction Standards – Minor System

## 2.2 Major System

Similar to the minor system, the Rational Method was used to estimate runoff flows. The rational formula for storm runoff is expressed as:

Q<sub>100</sub> = CIA/360

Where:

Q100= Runoff generated by a storm with a return period of 100 years (m³/s)C= Runoff coefficient as per City of Edmonton Zoning Bylaw 12800 (refer to Table 2-4)I= Rainfall intensity as per the 2018 IDF curves published by EPCOR (mm/hr)A= Drainage area (ha)

The time of concentration for each catchment area was estimated using the Kirpich equation. For small areas (i.e.: less than 1 ha), Table A6 within the City of Edmonton Design and Construction Standards was used to determine the time of concentration.

| Land Use                   | Minor System Runoff Coefficients |
|----------------------------|----------------------------------|
| Industrial                 | 0.75                             |
| Commercial                 | 0.75                             |
| Public Utility             | 0.94                             |
| Park/Open Space/ER         | 0.13                             |
| Low Density Residential    | 0.63                             |
| Medium Density Residential | 0.94                             |
| Institutional              | 0.38                             |
| Natural Area               | 0.01                             |
| Roadways                   | 0.95                             |

Table 2-4Major System Runoff Coefficients

# 3 EXISTING DRAINAGE ASSESSMENT

There are three existing natural areas located within the Town boundary. Natural Area 1 is within NE-13-56-24-4, Natural Area 2 is within SE-18-56-23-4 and Natural Area 3 is within NE-18-56-23-4. These natural areas are shown in **Figure 3-1**. Currently, these natural areas act as stormwater management facilities, as they collect and store stormwater runoff from the existing development and undeveloped lands, to the north and west of the Town, before facilitating drainage towards the Sturgeon River. To better understand the existing drainage patterns into each natural area, drainage basins (basins) were delineated using a Geographical Information System (GIS) software, a 1 m Light Detection and Ranging (LiDAR) data and 15 m LiDAR data. The detailed LiDAR (1 m) was applied within the Town lands and the course LiDAR (15 m) was applied outside of the Town boundary to capture



LiDAR data (1 m and 15 m resolution)

any offsite flows. The delineation provided the general flow patterns within each basin (Figure 3-1).

Note that only Natural Area 3 has an outlet, which discharges north into the CNR line. This is based on discussions with the Town and the Drainage Study completed in 2005. Limited or no information on this outlet is available.

Catchment delineation results show that all three basins are greater than 65 ha. Based on the City of Edmonton Design and Construction Standards, it is recommended that for drainage areas larger than 65 ha a computer model be developed to verify estimated runoff flows. Therefore, a PCSWMM model was developed to estimate the peak runoff generated within the three basins during a 1 in 100 year 24 hour design storm event.

Table 3-1 summarizes the basins characteristics.

| Drainage<br>Basin | Natural Area<br>Within Basin | Legal Location of<br>Natural Area | Drainage Basin<br>Area (ha) | Estimated Peak<br>Runoff (L/s) <sup>1</sup> | Release Rate<br>(L/s/ha) |
|-------------------|------------------------------|-----------------------------------|-----------------------------|---------------------------------------------|--------------------------|
| 1                 | Natural Area 1               | NE-13-56-24-4                     | 253                         | 1,490                                       | 6                        |
| 2                 | Natural Area 2               | SE-18-56-23-4                     | 80                          | 1,710                                       | 21                       |
| 3                 | Natural Area 3               | NE-18-56-23-4                     | 71                          | 680                                         | 10                       |

Table 3-1 Drainage Basin Summary

1 – Estimated using PCSWMM

**Table 3-1** shows that there is variation in flows within the basins. This is due to the different types of land uses within each basin. Based on the existing development within Basin 2, it has the largest estimated peak runoff due to less infiltration into the ground. In addition, flows are not currently controlled within this basin and are discharging into Natural Area 2. Basin assessment showed that Basin 1 is the most representative of pre-development flows because it consists of mainly undeveloped land. Therefore, it is recommended that all future development be controlled to a release rate of 6 L/s/ha into the Natural Areas.

As previously stated, the basins convey stormwater runoff through the storm pipes, ditches and culverts. The catchment areas for the minor and major systems were delineated using the LiDAR data. The Rational Method was used to estimate the flows discharging into the systems. In addition, the existing capacities were also determined.

**Figure 3-2** presents the existing stormwater system (minor and major). **Figure B-1** in **Appendix B** presents the LiDAR boundaries and delineated catchment areas contributing into the various systems.

## 3.1 Minor System Assessment

The Town's minor system is located along 50 Street between 47<sup>th</sup> Avenue and 52<sup>nd</sup> Avenue (**Figure 3-2**). The minor system was evaluated using the design criteria outlined in **Section 2.1**, the existing land use plan and the following:

- Contributing catchment areas were delineated to storm manholes;
- Design flows were applied to the upstream manholes;
- Weighted runoff coefficients were applied to each contributing catchment area;
- The following data was obtained from the Town's GIS database:
  - Pipe material, size and length
  - Manhole ID's
  - Manhole invert and rim elevations
- The slope of the storm pipes was calculated using the available invert elevations and pipe lengths; and,
- Manholes labelled with "AE" in their ID were used to represent potential missing data.

Note, some information pertinent to the existing stormwater system was not available within the Town's GIS database. In addition, the available as-built information was not sufficient to supplement the missing information. Therefore, assumptions were made based on standard engineering practices and information from the Drainage Study completed in 2005.

Table 3-2 summarizes the existing minor system assessment.

|                     |                       |                       |                       |                   |                         | 1                    |
|---------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------------|----------------------|
| Upstream<br>Manhole | Downstream<br>Manhole | Design Flow<br>(m³/s) | Pipe Diameter<br>(mm) | Pipe Slope<br>(%) | Sufficient<br>Capacity? | Sufficient<br>Cover? |
| S703A               | ST703                 | 0.555                 | 525                   | 0.03              | No                      | Yes                  |
| ST715               | ST714                 | 0.127                 | 200                   | 1.04              | No                      | Yes                  |
| ST714               | ST713                 | 0.128                 | 200                   | 0.29              | No                      | Yes                  |
| ST713               | ST712                 | 0.130                 | 200                   | 0.50              | No                      | No                   |
| ST712A              | ST712                 | 0.019                 | 200                   | 1.13              | Yes                     | No                   |
| ST712               | ST710                 | 0.161                 | 750                   | 0.63              | Yes                     | No                   |
| ST711               | ST710                 | 0.317                 | 200                   | 0.04              | No                      | No                   |
| ST710               | ST709                 | 0.494                 | 750                   | 0.08              | No                      | Yes                  |
| ST709A              | ST709                 | 0.058                 | 300                   | 0.36              | Yes                     | Yes                  |
| ST709               | ST705                 | 0.569                 | 750                   | 0.33              | Yes                     | No                   |

Table 3-2 Existing Minor System Assessment

| Upstream<br>Manhole | Downstream<br>Manhole | Design Flow<br>(m³/s) | Pipe Diameter<br>(mm) | Pipe Slope<br>(%) | Sufficient<br>Capacity? | Sufficient<br>Cover? |
|---------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------------|----------------------|
| ST708               | ST707                 | 0.125                 | 375                   | 0.18              | No                      | No                   |
| ST707               | ST706                 | 0.126                 | 375                   | 0.35              | No                      | No                   |
| ST706               | ST705                 | 0.223                 | 375                   | 0.30              | No                      | No                   |
| ST705               | ST705A                | 0.793                 | 750                   | 0.37              | No                      | No                   |
| AE_1                | ST705C                | 0.087                 | 300                   | 0.50              | No                      | No                   |
| ST705C              | ST705B                | 0.087                 | 300                   | 0.50              | No                      | No                   |
| ST705B              | ST705A                | 0.093                 | 300                   | 0.67              | No                      | No                   |
| ST705A              | ST704_AE              | 0.888                 | 750                   | 0.23              | No                      | No                   |
| AE_2                | ST704                 | 0.033                 | 300                   | 0.31              | Yes                     | No                   |
| ST704               | ST704A                | 0.033                 | 300                   | 0.31              | Yes                     | No                   |
| ST704A              | ST704_AE              | 0.134                 | 375                   | 0.31              | No                      | No                   |
| ST704_AE            | ST703                 | 1.791                 | 750                   | 0.26              | No                      | No                   |
| ST703               | ST702                 | 2.348                 | 900                   | 0.03              | No                      | No                   |
| ST702               | ST701                 | 2.452                 | 900                   | 0.23              | No                      | No                   |
| ST701               | Natural Area 2        | 2.459                 | 900                   | 0.23              | No                      | No                   |

Results show that there are several storm pipes that do not have the capacity to convey flows generated during a 1 in 5 year design storm event. In addition, results indicate that there are several storm pipes that do not have adequate cover.

**Figure 3-3** illustrates the storm pipes that have sufficient capacity, as well as pipes that do not. In addition, this figure shows storm pipes that do not have adequate cover. Detailed calculations are provided in **Appendix C**.

## 3.1.1 Proposed Upgrades to Minor System

Based on the above results, upgrades were proposed to the existing minor system to ensure that the storm pipe network conveys flows generated during the 1 in 5 year design storm event. **Table 3-3** summarizes the estimated design flows, existing pipe slopes and proposed upgrades. The proposed upgrades are shown in **Figure 3-4**. Detailed calculations for the proposed upgrades are provided in **Appendix D**.

| Upstream<br>Manhole | Downstream<br>Manhole | Design Flow<br>(m³/s) | Slope (%) | Proposed Storm Pipe<br>Diameter (mm) <sup>1</sup> |
|---------------------|-----------------------|-----------------------|-----------|---------------------------------------------------|
| S703A               | ST703                 | 0.555                 | 0.03      | 1200                                              |
| ST715               | ST714                 | 0.127                 | 1.04      | 375                                               |
| ST714               | ST713                 | 0.128                 | 0.29      | 450                                               |
| ST713               | ST712                 | 0.130                 | 0.50      | 450                                               |
| ST711               | ST710                 | 0.317                 | 0.04      | 900                                               |
| ST710               | ST709                 | 0.494                 | 0.08      | 900                                               |

Table 3-3 Proposed Upgrades to Existing Minor System

| Upstream<br>Manhole | Downstream<br>Manhole | Design Flow<br>(m³/s) | Slope (%) | Proposed Storm Pipe<br>Diameter (mm) <sup>1</sup> |
|---------------------|-----------------------|-----------------------|-----------|---------------------------------------------------|
| ST708               | ST707                 | 0.125                 | 0.18      | 525                                               |
| ST707               | ST706                 | 0.126                 | 0.35      | 450                                               |
| ST706               | ST705                 | 0.223                 | 0.30      | 525                                               |
| ST705               | ST705A                | 0.793                 | 0.37      | 900                                               |
| AE_1                | ST705C                | 0.087                 | 0.50      | 375                                               |
| ST705C              | ST705B                | 0.087                 | 0.50      | 375                                               |
| ST705B              | ST705A                | 0.093                 | 0.67      | 375                                               |
| ST705A              | ST704_AE              | 0.888                 | 0.23      | 1050                                              |
| ST704A              | ST704_AE              | 0.134                 | 0.31      | 450                                               |
| ST704_AE            | ST703                 | 1.791                 | 0.26      | 1200                                              |
| ST703               | ST702                 | 2.348                 | 0.03      | 1950                                              |
| ST702               | ST701                 | 2.452                 | 0.23      | 1350                                              |
| ST701               | Natural Area 2        | 2.46                  | 0.23      | 1350                                              |

<sup>1</sup> Nominal diameter.

In addition to the proposed upgrades provided above, the following are recommended:

- Pipe insulation should meet minimum cover requirements. To ensure frost heave does not occur, insulation is recommended to be placed below the frost line;
- Ensure that all storm pipes meet the minimum grade requirements. Re-grading may be required to meet velocity requirements. Existing storm pipes that do not meet the slope design standard requirements are identified in red text in **Appendix C**; and,
- Develop a maintenance plan for the storm pipe network, including but not limited to:
  - Regular cleaning of manholes; and,
  - Inspection of manhole and pipe conditions.

It is recommended that the Town complete a detailed assessment of the storm pipe network through topographical survey and CCTV to verify the analysis and proposed upgrades.

## 3.2 Major System Assessment

As previously stated, the Town has a major system, comprised of culverts and ditches (Figure 3-2). The ditches illustrated in Figure 3-2 convey most of the stormwater runoff, as they are located along the main roadways. Residential ditches, located in front of resident's homes, are not shown. The major system was evaluated based the design criteria outlined in Section 2.2, the existing land use map and the following:

- Catchment areas were delineated to the upstream and downstream of each culvert;
- The following data was extracted from the Town's geographical information system (GIS);
  - Culvert length and diameter
  - Length of ditch

- The LiDAR surface was used to estimate the slope of the ditches, which was applied to the culverts along each segment;
- Weighted runoff coefficients were applied to each contributing catchment area;
- Culverts were assessed based on their full-flow capacity; and,
- Culvert crossings at local roadways were not assessed.

Limited or no information pertinent to the existing stormwater system was available within the Town's GIS database. Therefore, various assumptions were made based on standard engineering practices and information from the Drainage Study completed in 2005. In addition, the ditch networks were not assessed due to no information available.

Table 3-4 summarizes the existing major system assessment.

| Culvert ID | Design Flow<br>(m³/s) | Existing Culvert<br>Diameter (mm) | Full Flow Capacity<br>(m³/s) | Sufficient<br>Capacity? |
|------------|-----------------------|-----------------------------------|------------------------------|-------------------------|
| Culvert 24 | 0.01                  | 600                               | 0.05                         | Yes                     |
| Culvert 14 | 1.25                  | 600                               | 0.23                         | No                      |
| Culvert 13 | 3.36                  | 700                               | 0.35                         | No                      |
| Culvert 12 | 4.22                  | 600                               | 0.23                         | No                      |
| Culvert 10 | 2.27                  | 700                               | 0.20                         | No                      |
| Culvert 11 | 2.27                  | 700                               | 0.20                         | No                      |
| Culvert 15 | 0.27                  | 500                               | 0.23                         | No                      |
| Culvert 4  | 0.86                  | 500                               | 0.23                         | No                      |
| Culvert 2  | 1.03                  | 400                               | 0.13                         | No                      |
| Culvert 1  | 4.29                  | 500                               | 0.23                         | No                      |
| Culvert 35 | 4.49                  | 500                               | 0.23                         | No                      |
| Culvert 6  | 0.30                  | 600                               | 0.17                         | No                      |
| Culvert 5  | 0.45                  | 400                               | 0.06                         | No                      |
| Culvert 3  | 0.52                  | 400                               | 0.06                         | No                      |
| Culvert 36 | 0.93                  | 400                               | 0.06                         | No                      |
| Culvert 33 | 1.28                  | 600                               | 0.20                         | No                      |
| Culvert 8  | 0.01                  | 500                               | 0.20                         | Yes                     |
| Culvert 30 | 0.24                  | 300                               | 0.05                         | No                      |
| Culvert 7  | 2.38                  | 300                               | 0.05                         | No                      |
| Culvert 20 | 0.88                  | 400                               | 0.16                         | No                      |
| Culvert 19 | 0.88                  | 400                               | 0.16                         | No                      |
| Culvert 26 | 0.29                  | 600                               | 0.53                         | Yes                     |
| Culvert 21 | 0.29                  | 600                               | 0.53                         | Yes                     |
| Culvert 16 | 2.92                  | 600                               | 0.40                         | No                      |
| Culvert 18 | 0.03                  | 400                               | 0.13                         | Yes                     |
| Culvert 31 | 0.04                  | 400                               | 0.13                         | Yes                     |

Table 3-4 Existing Major System Assessment

| Culvert ID | Design Flow | Existing Culvert | Full Flow Capacity | Sufficient |
|------------|-------------|------------------|--------------------|------------|
|            | (m³/s)      | Diameter (mm)    | (m³/s)             | Capacity?  |
| Culvert 32 | 0.16        | 400              | 0.13               | No         |

**Figure 3-5** presents the culverts the have sufficient capacity, as well as culverts that do not. The results show that the majority of the culverts do not have the capacity to convey the estimated design flow generated during a 1 in 100 year design storm event. Detailed calculations are provided in **Appendix E**.

Identified ponding areas (Figure 1-2) validates the major system assessment results.

## 3.2.1 Proposed Upgrades to Major System

The estimated design flows, proposed culvert diameters and full-flow capacities are summarized in **Table 3-5**. Note that diameters flagged with an asterix (\*) are existing diameters that have capacity and do not need to be upgraded.

| Culvert ID | Design Flow<br>(m³/s) | Proposed Size<br>(mm) | Full Flow Capacity<br>(m <sup>3</sup> /s) |
|------------|-----------------------|-----------------------|-------------------------------------------|
| Culvert 24 | 0.01                  | 600*                  | 0.05                                      |
| Culvert 14 | 1.25                  | 1200                  | 1.48                                      |
| Culvert 13 | 3.36                  | 1650                  | 3.46                                      |
| Culvert 12 | 4.22                  | 1800                  | 4.36                                      |
| Culvert 10 | 2.27                  | 1800                  | 2.27                                      |
| Culvert 11 | 2.27                  | 1800                  | 2.27                                      |
| Culvert 15 | 0.27                  | 600                   | 0.37                                      |
| Culvert 4  | 0.86                  | 900                   | 1.09                                      |
| Culvert 2  | 1.03                  | 900                   | 1.09                                      |
| Culvert 1  | 4.29                  | 1650                  | 5.50                                      |
| Culvert 35 | 4.49                  | 1650                  | 5.50                                      |
| Culvert 6  | 0.30                  | 750                   | 0.31                                      |
| Culvert 5  | 0.45                  | 900                   | 0.50                                      |
| Culvert 3  | 0.52                  | 1050                  | 0.76                                      |
| Culvert 36 | 0.93                  | 1200                  | 1.09                                      |
| Culvert 33 | 1.28                  | 1350                  | 1.73                                      |
| Culvert 8  | 0.01                  | 500*                  | 0.20                                      |
| Culvert 30 | 0.24                  | 600                   | 0.31                                      |
| Culvert 7  | 2.38                  | 1350                  | 2.65                                      |
| Culvert 20 | 0.88                  | 900                   | 1.36                                      |
| Culvert 19 | 0.88                  | 900                   | 1.36                                      |
| Culvert 26 | 0.29                  | 600*                  | 0.53                                      |

Table 3-5 Proposed Upgrades to Existing Major System

| Culvert ID | Design Flow<br>(m³/s) | Proposed Size<br>(mm) | Full Flow Capacity<br>(m <sup>3</sup> /s) |
|------------|-----------------------|-----------------------|-------------------------------------------|
| Culvert 21 | 0.29                  | 600*                  | 0.53                                      |
| Culvert 16 | 2.92                  | 1350                  | 3.49                                      |
| Culvert 18 | 0.03                  | 400*                  | 0.13                                      |
| Culvert 31 | 0.04                  | 400*                  | 0.13                                      |
| Culvert 32 | 0.16                  | 450                   | 0.17                                      |

The locations of the proposed culvert upgrades are presented in **Figure 3-6**. In addition to the proposed upgrades provided above, the following are recommended:

- Ditches are to have a width equal to the diameter of the upstream culvert;
- Adequate grading is to be provided within the ditches. A minimum value of 0.5% is recommended; and,
- Develop a maintenance plan for the ditch network, including but not limited to:
  - Cutting grass and vegetation within the ditches;
  - Maintenance of the ditch profile to ensure adequate grade; and,
  - Inspection for accumulation of sediment and other debris.

It is recommended that the Town complete a detailed topographic survey of ditches and culverts to verify the analysis and proposed upgrades.





le edm-fs-01 projects/2018345900\_Master\_Servicing\Working\_Dwgs/010\_GISM-r0Map/StormMasterPlan/Fg3-2\_ExistingStormwater6y;sterm\_11x17.







\section = 0.01\projects2013345900\_Master\_Servicing\Working\_Dvgs\010\_GIS\ArcMap\StormMasterPlanFig3-7\_ExistingMaprSystemAssessment\_11x17.n



# 4 FUTURE STORMWATER MANAGEMENT PLAN

Future development is proposed within the west and north parts of the Town, in addition to the following locations:

- North of 54<sup>th</sup> Avenue (NE-18-56-23-W4); and,
- Within the undeveloped portion in SE-18-56-23-W4.

Based on the future land use concept (Figure 1-3), the development within these areas consists of low density residential, commercial and industrial land uses.

## 4.1 Minor System

Based on the future land use concept, no flows from future developments will discharge into the existing minor system. All future development minor systems should be designed separately from the existing system. Based on the details required to develop a stormwater management plan within the future development, the minor systems were not investigated.

## 4.2 Major System

The major system was evaluated based the design criteria outlined in **Section 2.2** and the future land use map. As previously stated, the ditches were not assessed due to no available information.

Based on the details required to develop a stormwater management plan within the future development, the required ditches were not investigated.

## 4.2.1 Culvert Assessment

Culverts within the upgraded major system were assessed based on flows generated from future developments contributing into the existing systems. Table 4-1 summarizes the major system assessment.

| Culvert ID | Design Flow<br>(m³/s) | Culvert Diameter<br>(mm) <sup>1</sup> | Full Flow Capacity<br>(m³/s) | Sufficient<br>Capacity? |
|------------|-----------------------|---------------------------------------|------------------------------|-------------------------|
| Culvert 24 | 0.01                  | 600                                   | 0.05                         | Yes                     |
| Culvert 14 | 1.25                  | 1200                                  | 1.48                         | Yes                     |
| Culvert 13 | 3.36                  | 1650                                  | 3.46                         | Yes                     |
| Culvert 12 | 4.22                  | 1800                                  | 4.36                         | Yes                     |
| Culvert 10 | 2.35                  | 1800                                  | 2.47                         | Yes                     |
| Culvert 11 | 2.35                  | 1800                                  | 2.47                         | Yes                     |
| Culvert 15 | 0.27                  | 600                                   | 0.37                         | Yes                     |
| Culvert 4  | 0.86                  | 900                                   | 1.09                         | Yes                     |
| Culvert 2  | 1.03                  | 900                                   | 1.09                         | Yes                     |

Table 4-1 Future Major System Assessment

| Culvert ID | Design Flow<br>(m³/s) | Culvert Diameter<br>(mm) <sup>1</sup> | Full Flow Capacity<br>(m³/s) | Sufficient<br>Capacity? |
|------------|-----------------------|---------------------------------------|------------------------------|-------------------------|
| Culvert 1  | 4.29                  | 1650                                  | 5.5                          | Yes                     |
| Culvert 35 | 4.49                  | 1650                                  | 5.5                          | Yes                     |
| Culvert 6  | 0.30                  | 750                                   | 0.31                         | Yes                     |
| Culvert 5  | 0.45                  | 900                                   | 0.5                          | Yes                     |
| Culvert 3  | 0.52                  | 1050                                  | 0.76                         | Yes                     |
| Culvert 36 | 0.93                  | 1200                                  | 1.09                         | Yes                     |
| Culvert 33 | 1.28                  | 1350                                  | 1.73                         | Yes                     |
| Culvert 8  | 0.01                  | 500                                   | 0.20                         | Yes                     |
| Culvert 30 | 0.24                  | 600                                   | 0.31                         | Yes                     |
| Culvert 7  | 2.38                  | 1350                                  | 2.65                         | Yes                     |
| Culvert 20 | 1.21                  | 900                                   | 1.36                         | Yes                     |
| Culvert 19 | 1.21                  | 900                                   | 1.36                         | Yes                     |
| Culvert 26 | 0.29                  | 600                                   | 0.53                         | Yes                     |
| Culvert 21 | 0.29                  | 600                                   | 0.53                         | Yes                     |
| Culvert 16 | 11.07                 | 1350                                  | 0.40                         | No                      |
| Culvert 18 | 0.03                  | 400                                   | 0.13                         | Yes                     |
| Culvert 31 | 0.04                  | 400                                   | 0.13                         | Yes                     |
| Culvert 32 | 0.16                  | 450                                   | 0.17                         | Yes                     |

<sup>1</sup> Culvert diameter based on proposed upgrades from the existing minor system assessment.

**Figure 4-1** presents the culverts that have sufficient capacity, as well as culverts that do not. Results show that all upgraded culverts within the existing system have capacity, except for Culvert 16 due to additional flows generated from future developments. Table 4-2 summarizes the proposed upgrade for Culvert 16.

Table 4-2 Proposed Upgrades to Future Major System

| Culvert ID | Location                         | Design Flow<br>(m³/s) | Proposed Culvert<br>Diameter (mm) | Full Flow Capacity<br>(m³/s) |
|------------|----------------------------------|-----------------------|-----------------------------------|------------------------------|
| Culvert 16 | 57th Street north of 51st Avenue | 11.1                  | 1500 (x 3)                        | 4.62                         |

The location of Culvert 16 is shown in **Figure 4-2**. If the Town undertakes the existing major system upgrades (outlined in **Section 3.2.1**), it is advantageous to upgrade Culvert 16 for the ultimate development. Note that Culvert 16 currently collects flows generated from the undeveloped lands to the west and north of the Town. It is anticipated that as development occurs within these areas, stormwater management practices will be implemented. Therefore,

post-development surface water runoff into Culvert 16 is anticipated to be lower. It is recommended that the Town complete a detailed topographic survey of the ditches and culverts to verify the analysis, if required.

Detailed calculations are provided in Appendix F.

### 4.2.2 Stormwater Management Facilities

The entire future development will require an on-site minor and major stormwater system. The City of Edmonton's stated goal for stormwater management is "to provide drainage for urban areas that preserves and promotes the general health, welfare, security and economic wellbeing of the public and to protect and enhance the water quality of receiving watercourses". Therefore, to mitigate any impacts on the drainage systems within the area, due to the proposed development, the Town requires stormwater management facilities. The stormwater management facilities will allow system discharge rates to be controlled to the recommended release rate of 6 L/s/ha.

The City of Edmonton Design and Construction Standards state that a minimum drainage area of 5 ha is required to generate constant or periodic flow to a stormwater management facility, however, the smallest practical drainage area is 20 ha. Defining a minimum drainage area achieves the following:

- Maintaining the sustainability of the infrastructure;
- Providing constant or periodic flows into the facility; and,
- Preventing stagnant and long periods of dry conditions.

The stormwater management concept for the Town, for future development, consists of 9 stormwater management facilities. The proposed stormwater management facilities were placed in the existing low-lying areas, in consideration with the proposed future transportation plan (see Transportation Master Plan report) and on a minimum drainage area of 20 ha. Re-grading of the existing topography in some locations may be required, to ensure overland flows are conveyed into the facilities. These facilities are proposed to provide storage for storm events with design storm events of up to 100 years. It is recommended that all stormwater management facilities be constructed as per the City of Edmonton Design and Construction Standards.

**Figure 4-3** presents the proposed stormwater management facility locations, their catchment areas and proposed drainage paths. The type of flow conveyance will be determined during the next phases of development.

The characteristics of the stormwater management facilities were determined using the Rational Method and the City of Edmonton 2018 IDF curve. **Table 4-3** summarizes the estimated catchment area, the volume and the proposed receiving waterbody for each facility.

| Stormwater Management<br>Facility ID | Contributing Area<br>(ha) | Estimated Storage<br>Volume (m³) | Proposed Receiving<br>Waterbody <sup>1</sup> |
|--------------------------------------|---------------------------|----------------------------------|----------------------------------------------|
| SWMF 1                               | 36                        | 26,670                           | Unnamed Tributary in<br>SW-13-56-24-4        |
| SWMF 2                               | 61                        | 38,610                           | Natural Area 1                               |
| SWMF 3                               | 33                        | 19,880                           | Natural Area 1                               |

Table 4-3 Proposed Stormwater Management Facility Characteristics

| Stormwater Management<br>Facility ID | Contributing Area<br>(ha) | Estimated Storage<br>Volume (m³) | Proposed Receiving<br>Waterbody <sup>1</sup> |
|--------------------------------------|---------------------------|----------------------------------|----------------------------------------------|
| SWMF 4                               | 25                        | 15,060                           | Natural Area 1                               |
| SWMF 5                               | 39                        | 23,580                           | Natural Area 1                               |
| SWMF 6                               | 16                        | 9,270                            | Natural Area 3                               |
| SWMF 7                               | 19                        | 11,210                           | Natural Area 3                               |
| SWMF 8                               | 40                        | 26,580                           | Natural Area 3                               |
| SWMF 9                               | 34                        | 22,970                           | Unnamed Tributary in<br>SW-17-56-23-4        |

<sup>1</sup> Tributary data - Base Stream and Flow Representation. Acquired from Altalis Ltd. (1996)

All proposed receiving waterbodies ultimately discharge into the Sturgeon River. Therefore, an environmental regulatory overview is required.

The final facility locations and sizes should be confirmed during the next stages of development. In addition, "leap-frogging" of development should be discouraged and sequential development should be encouraged.

### 4.2.3 Natural Areas

There are three natural areas located within the Town boundary. These natural areas act as stormwater management facilities before facilitating drainage towards the Sturgeon River. Majority of runoff flows generated within the existing development currently discharge into Natural Area 2. These flows are causing localized flooding within the adjacent residential areas. Therefore, no additional flows generated from the future development are proposed to be discharged into Natural Area 2.

As noted, only Natural Area 3 has an outlet to regulate flows. Therefore, improvements are required to mitigate existing issues in Natural Area 2 and to ensure Natural Area 1 does not have negative impacts on future development and the downstream system. It is proposed that control structures at each natural area are constructed to discharge flows at 6 L/s/ha. All natural areas should be assessed to ensure they can accommodate runoff flows. This will be achieved by establishing a design normal water level, based on the property line and the minimum freeboard.

All proposed improvements will require an environmental regulatory overview. The following sections outline the proposed improvements for each natural area.

## 4.2.3.1 Natural Area 1

Runoff from Basin 1 is conveyed into Natural Area 1 by overland flow and a ditch along 57<sup>th</sup> Street. Currently, there is no development surrounding Natural Area 1, however, residential development is proposed for the future. Flows from the future development will be controlled via stormwater management facilities at a discharge rate of 6 L/s/ha. It is recommended to construct an outlet for Natural Area 1 to ensure negative impacts on the development and the downstream system are mitigated.

Two drainage course options can be considered from the outlet of Natural Area 1:

- 1. Convey flows from Natural Area 1 to Natural Area 3 using a ditch system, where Natural Area 3 outlets north to the CNR line. This option is contingent on Natural Area 3 having adequate capacity to accommodate additional flows discharging from Natural Area 1. A detailed assessment is recommended to be undertaken to confirm this.
- 2. Flows from Natural Area 1 are discharged into an unnamed tributary, within NW-20-56-23-4, that ultimately conveys flows into the Sturgeon River.

### 4.2.3.2 Natural Area 2

Natural Area 2 receives runoff from the current development through the existing minor and major systems. Surrounding areas adjacent to Natural Area 2 have experienced flooding. To mitigate the existing flooding and drainage issues, the following are options are available:

1. Lower the existing 800 mm diameter culvert at the south end of Natural Area 2 to establish a normal water level (NWL) based on the existing property line. This culvert conveys flows to the south across Highway 28 where it discharges into a ditch system. This ditch system runs east-west along Highway 28 and north-south along Lily Lake Road. Flows within the system ultimately discharges into the Surgeon River. Note that discussions with Alberta Transportation will need to be undertaken to alter the existing culvert crossing Highway 28.



Localized Flooding from Natural Area 2 (March 2019)

- 2. Purchase and dispose of the adjacent homes within the existing impacted area, or flood zone. A detailed analysis, using a computer model, is recommended to define the flood zone.
- 3. Expand the existing Natural Area 2 to accommodate existing and future development flows without any negative impacts.

### 4.2.3.3 Natural Area 3

Based on the future land use plan, industrial and low density residential developments are proposed to be adjacent to Natural Area 3. It is recommended that the existing outlet be assessed to ensure flows are released at the controlled rate of 6 L/s/ha. In addition, it should be confirmed that Natural Area 3 can accommodate runoff flows from surrounding developments.

## 4.3 Snow Management

The Town has observed excessive surface water ponding, in some areas, during spring snowmelt. This is due to limited snow management. In addition, the snowmelt runoff could be contaminated with deleterious substances collected during maintenance of the roadways throughout the winter (sand or salt). These contaminates ultimately make their way into the Sturgeon River (downstream water body). To mitigate any impacts caused by snowmelt during spring within the existing and future development, the Town should consider developing a snow management program in addition to the construction of a snow management facility. The snow management program would involve the creation of a maintenance and operation program for hauling and disposing of their snow.


\\sectm-fs-01\projects2018345900\_Master\_Servicing\Working\_Dvgsl010\_GISMrcMap\StormMasterPlan\Fg4-1\_EvaluationofFutureMajprSystem\_11x17,my



\\\\setmin\_fs01\projects2019345910\_Master\_Servicing\Working\_Dvgs\010\_GISMrcMap\StormMasterPlan\Fig42\_ProposedFutureMajorSystemUpgrades\_11x17.r







Legend:

- **Proposed SWMF Locations**
- Drainage Directions
- Tributary
- Contours (0.5m Interval)
- Natural
- Town Boundary



### FIGURE No. 4-3

TOWN OF BON ACCORD STORM MASTER PLAN UPDATE

PROPOSED STORMWATER MANAGEMENT FACILITIES

 
 AE PROJECT No.
 2019-3459

 SCALE
 1:9,000

 COORD. SYSTEM
 NAD 1983 3TM 114

 DATE
 2019 OCTOBER
 DESCRIPTION

ISSUED FOR FINAL

# 5 COST ESTIMATE

## 5.1 Proposed Upgrades – Existing System

A preliminary cost estimate for upgrades to the existing minor and major systems is provided in **Table 5-1**. The following assumptions were used to generate the cost estimate:

- A unit price of \$1,500 per linear meter of storm pipe replacement was assumed. This value includes surface restoration but not GST;
- 50% for Engineering and contingency has been included; and,
- Costs are in 2019 dollars.

## Table 5-1 Existing System Upgrades – Cost Estimate

| Item No. | No. Description                           |    | imated Cost |  |
|----------|-------------------------------------------|----|-------------|--|
| 1.0      | Remove and Replace Existing Storm Pipes   | \$ | 1,450,000   |  |
| 2.0      | 2.0 Remove and Replace Existing Culverts  |    | 630,000     |  |
|          | Total – Proposed Existing System Upgrades | \$ | 2,080,000   |  |
|          | Engineering and Contingency (50%)         | \$ | 1,040,000   |  |
|          | Preliminary Cost Estimate Total           | \$ | 3,120,000   |  |

Appendix G provides the detailed cost estimate.

# 6 CONCLUSIONS AND RECOMMENDATIONS

From the analysis described above, the following can be concluded:

- 1. There are three natural areas located within the Town boundary. These natural areas act as stormwater management facilities before facilitating drainage towards the Sturgeon River;
- 2. Assessment of the existing minor system showed that there are several storm pipes that do not have the capacity to convey flows generated during a 1 in 5 year design storm event. In addition, results indicate that there are several storm pipes that do not have adequate cover;
- 3. Assessment of the existing major system showed that the majority of the culverts do not have the capacity to convey the estimated design flow generated during a 1 in 100 year design storm event;
- 4. Based on the future land use concept, no flows from future developments will be discharged the existing minor system. Therefore, recommended upgrades for the existing minor system will be sufficient to accommodate flows from future development;
- 5. Majority of the upgraded culverts within the existing system have the capacity, except for five culverts; and,
- 6. A preliminary Class D cost estimate of \$3,120,000 is required to undertake the existing system upgrades.

Associated Engineering recommends the following:

- 1. Upgrade the proposed existing minor system described in Section 3.1.1;
- 2. The following additional upgrades for the existing minor system:
  - Install adequate pipe insulation to meet minimum cover requirements.
  - Ensure that all storm pipes meet the minimum grade requirements.
- 3. Develop a maintenance plan for the storm pipe network;
- 4. All future minor systems should be designed separately from the existing system;
- 5. Upgrade the proposed existing major system described in Section 3.2.1 and 4.2.1;
- 6. The following additional upgrades for the existing major system:
  - Ensure all ditches have a width equal to the diameter of the upstream culvert.
  - Provide adequate grading within the ditches. A minimum value of 0.5% is recommended.
- 7. Develop a maintenance plan for the ditch network;
- 8. The Town complete a detailed assessment of the storm pipe network, culverts and ditches through topographical survey to verify the analysis and proposed upgrades;

- All proposed stormwater management facilities within future development will be controlled to the release rate of 6 L/s/ha. The final facility locations and sizes are to be confirmed during the next stages of development. In addition, "leap-frogging" of development is to be discouraged and sequential development should be encouraged;
- 10. Improvements to Natural Areas 1, 2 and 3;
- 11. There are two viable drainage courses for Natural Area 1. A detailed assessment is to be completed during the next stages of development to select the best option;
- 12. There are three mitigation options identified to alleviate the existing flooding and drainage issues experienced within the surrounding areas of Natural Area 2. A detailed assessment is to be completed during the next stages of development to select the best option;
- 13. Confirm that Natural Area 3 can accommodate runoff flows from surrounding developments and upgrade as required;
- 14. The control structures for each natural area be constructed to discharge flows at 6 L/s/ha;
- 15. All natural areas should be assessed to ensure they can accommodate runoff flows. This will be achieved by establishing a design normal water level, based on the property line and the minimum freeboard;
- 16. All proposed improvements will require an environmental regulatory overview; and,
- 17. Consider construction of a snow storage facility to allow for snow management within existing developments and for future developments.

# CLOSURE

This report was prepared for the Town of Bon Accord to provide a Stormwater Master Plan for the existing and future development areas.

The services provided by Associated Engineering Alberta Ltd. in the preparation of this report were conducted in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No other warranty expressed or implied is made.

Respectfully submitted, Associated Engineering Alberta Ltd.

Diego Mejia, P.Eng. Project Manager Akinbola George, M.A.Sc., P.Eng., PMP Senior Water Resources Engineer

Lisa Butley

Lisa Butler, E.I.T. Water Resources Engineer-In-Training

| ASSO    |            | ERING    |
|---------|------------|----------|
| QUALITY | MANAGEMENT | SIGN-OFF |

Signature:

Date:

**APEGA Permit to Practice P 3979** 

PERMIT STAMP

## APPENDIX A - STORMWATER MASTER PLAN - PROPOSED DESIGN STANDARDS MEMORANDUM



| April 17, 2019        | File:                                                                                             | 20193459.00.03.00                                                                              |
|-----------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Town of Bon Accord    |                                                                                                   |                                                                                                |
| Lisa Butler, E.I.T.   |                                                                                                   |                                                                                                |
| 2019-3459             |                                                                                                   |                                                                                                |
| Stormwater Master Pla | an - Prop                                                                                         | posed Design Standards                                                                         |
|                       | April 17, 2019<br>Town of Bon Accord<br>Lisa Butler, E.I.T.<br>2019-3459<br>Stormwater Master Pla | April 17, 2019File:Town of Bon AccordLisa Butler, E.I.T.2019-3459Stormwater Master Plan - Prop |

## **MEMO**

Associated Engineering completed a desktop review of the current stormwater design standards for the Town of Bon Accord (the Town). The current design standards for the Town, pertinent to stormwater, are provided in **Appendix A**. Due to limited stormwater information available, the following design standards were reviewed:

- Alberta Environment and Parks (AEP);
- City of Edmonton;
- City of St. Albert; and,
- Sturgeon County.

**Table B-1** to **Table B-4** in **Appendix B** summarize the stormwater standards review. Based on our review and discussion with the Town on April 17, 2019, the Town will adopt the City of Edmonton Stormwater Design Standards (March 2015). This recommendation is made for the following reasons:

- The Town is close to the City of Edmonton;
- Other nearby communities, such as St. Albert and Sturgeon County, have similar design criteria to City of Edmonton Standards;
- The City of Edmonton Standards were most recently updated in 2015; and,
- The City of Edmonton is using the most current Intensity Duration Frequency (IDF) curves, developed in 2018.





Memo To: Town of Bon Accord April 04, 2019 - 2 -

Appendix A – Town of Bon Accord Stormwater Design Standards

#### 4.0 STORM SEWER SYSTEM

The pipe storm sewer system shall be of sufficient capacity to carry storm water run-off quantities based on:

- the Rational Method of storm sewer design;
- a five year storm for the Edmonton area;
- a minimum run-off co-efficient for residential areas and a minimum inlet time of 20 minutes.

#### 4.1 <u>Storm Sewer Mains</u>

Minimum size of 300 mm diameter.

All changes in direction of flow shall be no greater than 45° in pipes exceeding 600 mm diameter or flows exceeding 1.5 m/s in any pipe.

Mains shall be installed to provide a minimum depth of cover of 1.75m unless otherwise approved.

Mains shall be of sulfate resistant concrete with either mortar or rubber ring jointing systems or polyethylene on approval of the Town and its Engineer after assessment of storm water conditions in commercial or Industrial areas. In residential areas leads and mains may be PVC or polyethylene on approval of the Town and its Engineer after assessment of storm water conditions.

Sand bedding shall be provided for all mains.

Sand bedding shall be 150 mm below the pipe and up to at least 300 mm above the pipe on all mains.

Sand bedding shall be compacted to 95% Standard Procter Density in 150 mm layers. Sand bedding shall be well graded sand consisting of hard durable particles free from clay lumps, cementation, organic material, frozen material, or other deleterious materials. Gradations are to be within limits specified when tested to ASTM C136-84a and ASTM C117-84 and are to have a smooth curve without sharp breaks when plotted on a semi - log grading chart.

| <u>%Passing</u> |
|-----------------|
| 100             |
| 50 - 100        |
| 30 - 90         |
| 10 - 50         |
| 0 - 10          |
|                 |

Liquid limit maximum 25. Plasticity index maximum 6. Improved or special bedding shall be provided where soil conditions or trench load conditions dictate.

#### 4.2 <u>Storm Water Retention Ponds</u>

Retention and detention ponds shall be incorporated into storm drainage systems to meet all standards and requirements of Alberta Environment.

4.3 <u>Manholes</u>

Refer to standards listed under Sanitary Sewage Collection System.

All precast manholes shall be perched when the main size is 600 mm to 1050 mm. Tee riser manholes shall be used above 1050 mm diameter.

#### 4.4 Catch Basins

Surface water shall be intercepted with a sufficient number of catch basins such that the inlet capacity of the catch basins is sufficient to receive the calculated storm water flow. Surface water shall not be permitted to run a distance greater than 350m along roadways without provision for interception by catch basins. This distance shall be reduced on steep road grades according to good Engineering practises.

All catch basin bodies shall be of precast concrete sections (sulfate resistant) and constructed so as to provide a sump to trap rocks and gravel.

Catch basin leads shall be installed to provide a minimum depth of cover of 1.25 m unless otherwise approved. The minimum slope of catch basin leads shall be 2%.

All catch basin leads shall discharge directly into storm sewer manholes.

#### 4.5 <u>Trenching and Backfilling</u>

The developer shall undertake all necessary excavating and backfilling in accordance with Occupational Health and Safety Act and Regulations and shall be entirely responsible for all damages to either private or public property.

All backfill shall be compacted under existing and proposed streets, concrete work, and under all other areas requested by the Town. The backfill material shall be either native or imported granular material, as requested by the Town, and shall be compacted to 95% of Standard Proctor Density unless otherwise approved.



Memo To: Town of Bon Accord April 04, 2019 - 3 -

Appendix B – Design Standards Review



Table B-1

Stormwater Management Guidelines for the Province of Alberta (January 1999) - Review Summary

| Parameter                                            | Design Criteria                                                                                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| MINOR SYSTEM                                         |                                                                                                                 |
| Design Storm Event                                   | 1:5 Year                                                                                                        |
| Calculation Method                                   | Rational Method (Area < 50 ha)                                                                                  |
| Allowable Surcharge                                  | In a 1:100 year event, should not exceed basement levels and the flow depth on streets should not exceed 300 mm |
| MAJOR SYSTEM                                         |                                                                                                                 |
| Design Storm Event                                   | 1:100 Year                                                                                                      |
|                                                      | 0.30 m at the gutters                                                                                           |
| Maximum Allowable Ponding                            | Standing water should not exceed 0.50 m or extend to adjacent buildings                                         |
|                                                      | 0.05 m for arterial roads                                                                                       |
| Calculation Method                                   | Rational Method (Area < 50 ha) or computer modelling (Area > 50 ha)                                             |
| Stormwater Management Facilities - Wet Ponds         |                                                                                                                 |
| Minimum Water Surface Area                           | 2 ha                                                                                                            |
| Maximum Side Slopes above Active Storage Zone        | 4(H):1(V) to 5(H):1(V)                                                                                          |
| Maximum Interior Side Slopes in Active Storage Zone  | 5(H):1(V) to 7(H):1(V)                                                                                          |
| Maximum Exterior Side Slopes                         | 3(H):1(V)                                                                                                       |
| Detention Time                                       | 24 hours                                                                                                        |
| Length to Width Ratio                                | 4:1 to 5:1                                                                                                      |
| Minimum Permanent Pool Depth                         | 2.0 m                                                                                                           |
| Maximum Permanent Pool Depth                         | 3.0 m                                                                                                           |
| Stormwater Management Facilities - Dry Ponds         |                                                                                                                 |
| Detention Time                                       | 24 hours                                                                                                        |
| Maximum Active Retention Storage Depth               | 1.0 m to 1.5 m                                                                                                  |
| Maximum Water Level                                  | Below adjacent basement footings                                                                                |
| Maximum Interior Side Slopes                         | 4(H):1(V) to 5(H):1(V)                                                                                          |
| Maximum Exterior Side Slopes                         | 3(H):1(V)                                                                                                       |
| Minimum Freeboard                                    | 0.6 m                                                                                                           |
| Minimum Ratio of Effective Length to Effective Width | 4:1 to 5:1                                                                                                      |
| Minimum Slope along Pond Bottom                      | 1% (2% is preferred)                                                                                            |
| Drainage Swales                                      |                                                                                                                 |
| Minimum Longitudinal Slope                           | 1% to 2%                                                                                                        |
| Check Dams                                           | Used when the longitudinal slope exceeds 2% to 4%                                                               |
| Maximum Side Slopes                                  | 2.5 to 1 but are optimally less than 4 to 1                                                                     |
| Minimum Bottom Width                                 | 0.75 m                                                                                                          |
| Minimum Depth                                        | 0.5 m                                                                                                           |
| Maximum Velocity                                     | 0.5 m/s                                                                                                         |



| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                               |                                                                                          |                                                                                                                  |                                             |                                       |                  |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               |                                                                                          |                                                                                                                  | Besign enterna                              |                                       |                  |                |
| Design Storm Event                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                               | 1.5 Vear                                                                                 |                                                                                                                  |                                             |                                       |                  |                |
| Colculation Mathed                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                               | Pational Moth                                                                            | pod(Aroa < 65 ha)                                                                                                |                                             |                                       |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               | Rational Wet                                                                             |                                                                                                                  |                                             |                                       |                  |                |
| Table A4 - Storm Runoff Coefficien<br>According to                                                                                                                                                                                                                                                                                                                                                                                  | nts and Imperviou<br>Zoning                 | isness                                        | Based on Land                                                                            | ause zoning (Bylaw 12800) or Land Use                                                                            |                                             |                                       |                  |                |
| Zoning or Classification Designation<br>Per Bylaw # 12800 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                              | Runoff <sup>2</sup><br>Coefficient<br>" C " | Imperviousness <sup>3</sup><br>" Imp "<br>(%) |                                                                                          | Table A5 - Storm Rung                                                                                            | off Coefficients and<br>According to Land L | Imperviousn<br>Jse                    | ess              |                |
| A, RR, AC                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                         | 10 - 50                                       |                                                                                          | Land Use                                                                                                         | Runoff                                      | Impervious                            | sness " Imp "    |                |
| AP, Schools                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                         | 10 - 50                                       |                                                                                          |                                                                                                                  | Coefficient 1                               |                                       | (%)              |                |
| RF1, RF2, RF3, RF4, RMH, AGU                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                         | 40 - 65                                       |                                                                                          |                                                                                                                  | " C "                                       |                                       |                  |                |
| MA, IH                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                         | 40 - 70                                       |                                                                                          | Asphalt, concrete, roof areas                                                                                    | 0.95                                        | 90                                    | - 100            |                |
| RF5, RF6, RSL, RA7                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.65                                        | 40 - 90                                       |                                                                                          |                                                                                                                  |                                             |                                       |                  |                |
| CNC CSC IB IM RA9 CB1 CHY AGI                                                                                                                                                                                                                                                                                                                                                                                                       | 0.75                                        | 40 - 90                                       |                                                                                          | Industrial, commercial                                                                                           | 0.60                                        | 50                                    | - 100            |                |
| CO<br>CB2                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                        | 70 - 100                                      |                                                                                          | Single family residential                                                                                        | 0.65                                        | 40                                    | 0 - 60           |                |
| RMX, CMS, DC1, DC2, DC3, DC4                                                                                                                                                                                                                                                                                                                                                                                                        | *                                           | 40 - 100                                      |                                                                                          | Predominant grassed areas                                                                                        | 0.10                                        | 1(                                    | 0 - 30           |                |
| <sup>1</sup> For zonings not shown in this table, the runoff coefficient "C" and the percentage of<br>imperviousness "Imp%" shall be estimated by the designer. <sup>2</sup> Minimum design values to be used without specific area analysis. To be used only for<br>calculation of peak runoff rates by the rational method. <sup>3</sup> Typical ranges based on land use by/aw site coverage limits and typical paving practice. |                                             |                                               | рагмани                                                                                  |                                                                                                                  |                                             |                                       |                  |                |
| Runoff Coefficients for Design Stor<br>Greater than 10 Years                                                                                                                                                                                                                                                                                                                                                                        | rm Events w                                 | ith a Return Period                           | C x 1.2 for retu<br>C x 1.25 for retu                                                    | urn periods between 25 and 50 years<br>turn periods greater than 50 years                                        |                                             |                                       |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               | 2018 IDF Curv                                                                            | e                                                                                                                |                                             |                                       |                  |                |
| Time of Concentration                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                               |                                                                                          | Table A6 - De<br>with Respect to Cat                                                                             | sign Inlet Time (Mi<br>chment Impervious    | inutes)<br>sness and Si               | ize              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               |                                                                                          |                                                                                                                  |                                             | 50                                    | > 70             | 1              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               |                                                                                          | Catchment Area (A)                                                                                               | 30                                          | 50                                    | >70              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               |                                                                                          | A = 8 ha or less                                                                                                 | 8                                           | 8                                     | 5                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               |                                                                                          | 8 ha < A < 40 ha                                                                                                 | 9.2                                         | 9.2                                   | 6                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               |                                                                                          | A = 40 ha or more                                                                                                | 10.4                                        | 10.4                                  | 7.25             |                |
| Drainage Areas (< 30 ha)                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                               |                                                                                          |                                                                                                                  |                                             |                                       |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sure                                        | harge of Sewer Pines                          | None                                                                                     |                                                                                                                  |                                             |                                       |                  |                |
| Suicinaige of Sewer Pipes                                                                                                                                                                                                                                                                                                                                                                                                           |                                             | 150 mm                                        |                                                                                          |                                                                                                                  |                                             |                                       |                  |                |
| Acceptable Depths of Flow and Ponding on Roadways                                                                                                                                                                                                                                                                                                                                                                                   |                                             | No over-toppi<br>collector road               | ng of curbs occurs on local roadways, a v<br>s and one traffic lane in each travel direc | width equivalent to on the second s | ne traffic lane r<br>m inundation c         | emains free from<br>on arterial roads | n inundation on  |                |
| Stormwater Quality                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                               | BMPs prior to                                                                            | discharging into a pipes system                                                                                  |                                             |                                       |                  |                |
| Drainage Areas (>30 ha)                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                                               |                                                                                          |                                                                                                                  |                                             |                                       |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | Design Capacity                               | Reserve capad                                                                            | ity included to account for unanticipated                                                                        | d changes in land use a                     | and runoff                            |                  |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               | Pipes are to b                                                                           | e designed to accommodate, without su                                                                            | charge, 1.25 times the                      | e rate of flow v                      | which would occu | ur in a 5-vear |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                               | return period                                                                            | rainfall event                                                                                                   |                                             |                                       |                  |                |

Table B-2 N-1 . (1) 4-





| Table B-2                                                                                              |
|--------------------------------------------------------------------------------------------------------|
| The City of Edmonton Design and Construction Standards Volume 3 Drainage (March 2015) - Review Summary |

| Parameter                                         | Design Criteria                                                                                                                                                                                                                                                                                                                               |  |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Surcharge of Sewer Pipes                          | Where the storm trunk will receive both uncontrolled flow from areas ≥ 30 ha and controlled discharge from stormwater management facilities, the pipes shall be designed to accommodate, without surcharge, 1.25 times the 5 year design flow from the uncontrolled lands plus the maximum design stormwater management facility outflow rate |  |  |  |
| Hyetograph                                        | 4-hour Chicago when using computer simulation                                                                                                                                                                                                                                                                                                 |  |  |  |
| Storm Pipe Sizing                                 |                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Methodology                                       | Manning's Equation for pipe full conditions                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                   | All smooth-wall pipe (n = 0.013)                                                                                                                                                                                                                                                                                                              |  |  |  |
| Manning's n Valuas                                | Corrugated metal pipe - unpaved (n = 0.024)                                                                                                                                                                                                                                                                                                   |  |  |  |
| ivianning s n values                              | Corrugated metal pipe - invert paved (n = 0.020)                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                   | Corrugated metal pipe - all paved (n = 0.013)                                                                                                                                                                                                                                                                                                 |  |  |  |
| Minimum Storm Pipe Size                           | 300 mm diameter                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Minimum Catchbasin Lead Size                      | 250 mm diameter                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Minimum Foundation Drain Sewer Size               | 200 mm diameter                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Mean Velocity (Flowing Full)                      | 0.90 m/s to 1.0 m/s                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Acceptable Range of Velocities                    | 0.6 m/s < V < 3.0 m/s                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Supercritical Flows                               | Sewers shall not be designed to operate in super-critical flow conditions during flows les than design capacity conditions.<br>Hydraulic structure are required under super-critical flow regimes and must have a minimum design life of 75 years                                                                                             |  |  |  |
|                                                   | 200 mm diameter = 0.40 % (foundation drain sewer)                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                   | 250 mm diameter = 0.28% (foundation drain sewer)                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                   | 300 mm diameter = 0.22%                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Minimum Pipe Slopes                               | 375 mm diameter = 0.15%                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                   | 450 mm diameter = 0.12%                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                   | 525 mm diameter = 0.10%                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                   |                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                   | 200  mm diameter = 0.25%                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                   | 300 mm dameter = 0.23%                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Minimum Dine Slenes (Aligned in a Curve)          | 3/5 mm diameter = 0.15%                                                                                                                                                                                                                                                                                                                       |  |  |  |
| winimum Pipe Slopes (Alighed in a Curve)          | 450 mm diameter = 0.15%                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                   | 525 mm diameter = 0.13%                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Doubh of Cover from Finished Crede to Dire Obvert | 600 mm diameter and larger = 0.10%                                                                                                                                                                                                                                                                                                            |  |  |  |
| Depth of Cover from Finished Grade to Pipe Obvert | 20m                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Pipes < 610 mm diameter                           | 15 m                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Spacing Poquiroments                              |                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Maximum Elew Dictance in Readway Gutters          | 150 m                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Maximum Flow Distance in Longs and Walkways       | 130 m                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                   |                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Design Storm Event                                | 1:100 Vear                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Calculation Method                                | Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha)                                                                                                                                                                                                                                                                           |  |  |  |
|                                                   | Relow the lowest anticipated landscape grade or opening at any adjacent buildings with a freeboard provision generally                                                                                                                                                                                                                        |  |  |  |
|                                                   | in the order of 350 mm with a minimum of 150 mm                                                                                                                                                                                                                                                                                               |  |  |  |
| Maximum Ponding Depth                             | Loss than 250 mm in roadways and other public right of way's                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                   | Less than 550 min in roduways and other public right-or-way s                                                                                                                                                                                                                                                                                 |  |  |  |



| Table B-2                                                                                              |
|--------------------------------------------------------------------------------------------------------|
| The City of Edmonton Design and Construction Standards Volume 3 Drainage (March 2015) - Review Summary |

| Less than 150 mm for arterial roadways           Storage Elements           Over topping         None due to storm events equal to or less sever than the critical storage event for the catchment served           Modelling         Used to verify the partormance of each storage facility           Modelling         24-hour Hoff distribution is used owner modelling stormwater management           Emergency Overflow         To be provided wherever teacible           0.3 m if an emergency overflow is provided         To are provided wherever teacible           0.3 m if an emergency overflow is provided         To are provided wherever teacible           0.3 m if an emergency overflow is provided         To are provided wherever teacible           0.5 m if an emergency overflow is provided         To are provided wherever teacible           0.5 w if an emergency overflow is provided         To are provided wherever teacible           0.5 w if an emergency overflow is provided         To are provided wherever the available within 48 hours           0.5 w if an emergency overflow is provided         To are provided wherever the available within 48 hours           Stormwater Management Facilities (SWMFs)- Wet Pond and Constructed Wetlands         Outflow Control Gast           Outflow Control Gast         Sign are a normal varie report for easier symbol           Maintenane and Service Manal         Required for orastructed wetlands           Maintenane and Service M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                                                      | Design Criteria                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Storage Elements         Over topping, None due to storm events equal to a fess severe than the critical storage event for the catchment served           Retention Volume         Equivalent of 120 mm of water over the total catchment area draining the facility.           Modelling         Used to verify the performance of each storage facility.           Presspond         0.5 m if an emergency overflow in the provided           Presbard         0.1 m if an emergency overflow in the provided           Presbard         0.5 m if an emergency overflow in the provided           Drawdown Time         1 n 5 year runoff capacity to be available within 48 hours.           Drawdown Time         1 n 5 year runoff capacity to be available within 48 hours.           Outflow Control Wortis Quite from a SWMF must Incorporate appropriate means for control of outflow         0 outflow Control Wortis Quite from a sWMF must Incorporate appropriate means for control of outflow           Outflow Control Wortis Quite from a sWMF must Incorporate appropriate means for control of outflow         0 outflow Control Wortis Quite from a sWMF must Incorporate appropriate means for control of outflow           Outflow Control Wortis Quite from a sWMF must Incorporate appropriate means for control of outflow         0 means and avater level for constructed wetlands           Minimum Signeg Regulared for servery SWMF         Signeg Regulared for servery SWMF         Signeg Regulared for servery SWMF           Minimum Signeg Regulared for servery SWMF         Signeg Regulared for servery SWM                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | Less than 150 mm for arterial roadways                                                                                    |
| Over-topping         None due to storm events squal to or less severes than the critical storage event for the catchment served           Modelling         Used to verify the parformance of sech storage facility           Modelling         24 hour Hulf distribution is used when modelling stormwater management           Emergency Overflow         To be provided wherever feasible           0.3 m if an emergency overflow is provided         24 hour Hulf distribution is used when modelling stormwater management           Orswdown Time         In 5 year runoff capacity to be available within 94 hours           90% of the facility full volume to be available within 94 hours         90% of the facility full volume to be available within 94 hours           Flow Capacity of Streets         Apply the modified Manning's formula within 44 hours         90% of the facility full volume to be available within 96 hours           Stormwater Management Facilities (SWMFs)- Wet Pond and Constructed Wetlands         Outflow Control Gast         Stormwater Namagement facilities (SWMFs)           Stormwater Management Facilities (SWMFs)         Apply the modified Manning's formula with the 1 - 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management Facilities (SWMFs)         Apply the modified Manning's formula with n = 0.013 for condways and n = 0.05 for grassed boulevards           Stormwater Management Facilities (SWMFs)         Apply the modified Manning's formula with n = 0.013 for condways and n = 0.05 for grassed boulevards           Stormwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Storage Elements                                               |                                                                                                                           |
| Retention Volume         Equivalent of 120 mm of water over the total cathrange facility           Modelling         24 hour Huff distribution is used when modelling stormwater management           Energency Overflow         To be provided wherever fassible           Freeboard         0.3 m if an energency overflow is not provided           OS m if an energency overflow is not provided         0.5 m if an energency overflow is not provided           Dreadown Time         1 in 52 year runoff capacity to be available within 42 hours           Stormwater Management facilities (SWMFs) - Vet Pond and Constructed Wetlands         Apply the modified Manning's formula with n = 0.031 for roadways and n = 0.05 for grassed boulevards           Stormwater Management facilities (SWMFs) - Vet Pond and Constructed Wetlands         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management facilities (SWMFs) - Vet Pond and Constructed Wetlands         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management facilities (SWMFs) - Vet Pond and Constructed Wetlands         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management facilities (SWMFs) - Vet Pond and Constructed Wetlands         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management facilities (SWMFs) - Vet Pond and Constructed Vet as optimal water level <td< td=""><td>Over-topping</td><td>None due to storm events equal to or less severe than the critical storage event for the catchment served</td></td<>                                                                                                                                                                                                                                                                                | Over-topping                                                   | None due to storm events equal to or less severe than the critical storage event for the catchment served                 |
| Used to verify the performance of each storage facility           24-hour Huff distribution is used when modelling stormwater management           Emergency Overflow         To be provided wherever feasible           0.3 ml fan emergency overflow is provided         0.3 ml fan emergency overflow is provided           Dreadown Time         1 in 5 year runoff capacity to be available within 48 hours           Dreadown Time         1 in 5 year runoff capacity to be available within 96 hours           Down Time         2 Sey arrunoff capacity to be available within 96 hours           Down Soft of the facility full volume to be available within 96 hours         0.05 for grassed boulevards           Stormwater Management Facilities (SWMF) - Wet Pond and Constructed Wetlands.         0.05 for grassed boulevards           Outflow Control Gate         Silde gate or similar means to stop the discharge of impounded water           Maintenance and Service Manail         Signage Required for every SWMF           Side Stope         Signage Required for a struct elvel for constructed wetlands           Minimum Singlig 2.0 ha at normal water level or constructed wetlands         Signage Required for struct elvel and the bottom of the pond           Minimum Singlig 2.0 ha at one water level and the bottom of the pond         Side Stope           Side Stope         Sile Side stope           Side Stope         Full:1(V) for confine dayses or areass with extreme topography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Retention Volume                                               | Equivalent of 120 mm of water over the total catchment area draining the facility                                         |
| Modeling         24-hour Huff distribution is used when modeling stormwater management.           Emergency Overflow         10 be provided wherever feasible           Freeboard         0.5 m if an emergency overflow is not provided           Drawdown Time         1 in 25 year runoff capacity to be available within 24 hours           Drawdown Time         1 in 25 year runoff capacity to be available within 24 hours           Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands         20.5 for grassed boulevards           Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands         20.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | Used to verify the performance of each storage facility                                                                   |
| Emergency Overflow  To be provided wherever feasible  Created Construction  Freeboard  Construction  Construction | Modelling                                                      | 24-hour Huff distribution is used when modelling stormwater management                                                    |
| 0.3 m if an emergency overflow is provided           0.5 m if an emergency overflow is not provided           0.5 m if an emergency overflow is not provided           0.5 m of apacity of be available within 24 hours           1 in 25 year runoff capacity to be available within 24 hours           90% of the facility fill volume to be available within 86 hours           90% of the facility fill volume to be available within 86 hours           1 m 25 year runoff capacity to be available within 86 hours           90% of the facility fill volume to be available within 8 hours           1 m 25 year runoff capacity to be available within 86 hours           1 m 25 year runoff capacity to be available within 86 hours           2 m 2 model         Apply the modified Manning's formula with n = 0.013 for readways and n = 0.05 for grassed boulevards           3 m if an emergency overflow is not provided         Maintenance and Service Marual Required for every SWMF           0 with mum Sting 120 has a normal water level         Signage Required for safety           1 (hi):1/10 for a low horman water level         Signage (hi):1/10 for confined spaces or areas with externe topography           1 (hi):1/10 for confined spaces or areas with externe topography         Located to maximum deterion in and circulation. Distanced as far as possible form each other to avoid hydraulic short-circuiting           1 (hi):1/10 vi confined spaces or areas with externe topography         Side Stope 10%           1 (hi):1/10 within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Emergency Overflow                                             | To be provided wherever feasible                                                                                          |
| In energency overflow is not provided           Drawdown Time         1 in 5 year runoff capacity to be available within 24 hours           Drawdown Time         1 in 25 year runoff capacity to be available within 96 hours           Bow Capacity of Streets         Apply the modified Manning's formula with n = 0.031 for radways and n = 0.05 for grassed boulevards           Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands         Side grate or similar means to stop the discharge of impounded water           Outflow Control Works         Outflow Control Works         Side grate or similar means to stop the discharge of impounded water           Maintenance and Service Manual         Required for servery SWMF         Side grate or similar means to stop the discharge of impounded water           Minimum String         2.0 ha at normal water level for constructed wetlands         The Side Side Side Side Side Side Side Sid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | 0.3 m if an emergency overflow is provided                                                                                |
| In 5 year runoff capacity to be available within 24 hours           Drawdown Time         In 5 year runoff capacity to be available within 24 hours           Soft of the facility full volume to be available within 36 hours           Soft of the facility full volume to be available within 66 hours           Soft of the facility full volume to be available within 66 hours           Soft of the facility full volume to be available within 66 hours           Outflow Control Gat Silde gate or sining in formula with n = 0.013 for radways and n = 0.05 for grassed boulevards           Sormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands           Outflow Control Gat Silde gate or sining renears to stop the discharge of impounded water           Maintenance and Service Manual           Required for servy SWMF           Signage         Required for servy SWMF           Signage Required for safety           Signage Required for safety           Signage Required for safety           Side Stopes Signage           Required for safety           Side Stopes Signage           Side Stopes Signage           Required for safety           Side Stopes Signage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Freeboard                                                      | 0.5 m if an emergency overflow is not provided                                                                            |
| Drawdown Time         1 n 2 year runoff capacity to be available within 48 hours           Prow Capacity of Streets         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands         Outflow Control Gwts           Outflow Control Gwts         Sludet form a SWMF must incorporate appropriate means for control of outflow           Outflow Control Gwts         Sludet form a SWMF must incorporate appropriate means for control of outflow           Maintenance and Service Manual         Required for safety           Maintenance and Service Manual         Required for safety           Side Spess         Z(Ph12U) for a confined spaces or areas or inforeguently covered by water           Side Spess         Z(Ph12U) for a nomal water level for constructed wetlands           Side Spess         Z(Ph12U) for 0.0 melow normal water level           Side Spess         Z(Ph12U) for 0.0 melow normal water level           Side Spess         Z(Ph12U) for 0.0 melow normal water level           Ninimum Depth         2.5 m between normal water level and the bottom of the pond           Intel and Outlets         Summu uset storag           Stormwater Management Facilities (SWMFs) - Dry Ponds         Zom (measured from the invert elevation of the outlet pipe)           Mainmum Side Spess in product ore openings         ZMi1U in pruste property <td></td> <td>1 in 5 year runoff capacity to be available within 24 hours</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                | 1 in 5 year runoff capacity to be available within 24 hours                                                               |
| 90% of the facility full volume to be available within 96 hours           Flow Capacity of Streets         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands         Outflow Control Works           Outflow Control Works         Dutlet from a SWMF must incorporate appopriate means for control of outflow           Outflow Control Gale         Signage           Required for every SWMF         Required for every SWMF           Signage         Required for every SWMF           Signage         Required for afety           Minimum Sizing         2.0 hat normal water level for constructed wetlands           Y[H]:1(Y) for areas normal or infrequently covered by water         Si(H):1(Y) for confined spaces or areas with extreme topography           Intel/Outlet Spacing         Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-<br>circuiting           Stormwater Management Facilities (SWMFs) - Dry Ponds         Yub water greater is preferred.)           Stormwater Management Facilities (SWMFs) - Dry Ponds         Yub or greater is preferred.)           Maximum Ubey Storage         3.0 m (measured from the inver elevation of the outlet pipe)           Minimum Silpe of Pond Bottom         Dreferred.)           Yub Storage         Yub Yub in prubic property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drawdown Time                                                  | 1 in 25 year runoff capacity to be available within 48 hours                                                              |
| Flow Capacity of Streets         Apply the modified Manning's formula with n = 0.013 for roadways and n = 0.05 for grassed boulevards           Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands         Outflow Control Gwcs [Jutter from a SWMF must incorporate appropriate means for control of outflow           Outflow Control Gwcs [Jutter from a SWMF must incorporate appropriate means for control of outflow         Outflow Control Gwcs [Jutter from a SWMF           Maintenance and Service Manual Required for every SWMF         Signage         Required for every SWMF           Signage         Required for safety         This: JUT for areas normal or infrequently covered by water           Signage         Signage         Required for safety           Signage         Signage         Signage         Signage           Signage         Required for safety         Signage         Signage           Signage         Signage         Signage         Signage         Signage         Signage         Signage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | 90% of the facility full volume to be available within 96 hours                                                           |
| Stormwater Management Facilities (SWMFs) - Wet Pond and Constructed Wetlands<br>Outflow Control Eds [Side gate or similar means to stop the discharge of impounded water<br>Maintenance and Service Manual Required for every SWMF<br>Signage Required for every SWMF<br>Signage Required for every SWMF<br>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow Capacity of Streets                                       | Apply the modified Manning's formula with $n = 0.013$ for roadways and $n = 0.05$ for grassed boulevards                  |
| Outflow Control Works         Outlet from a SWMF must incorporate appropriate means for control of outflow           Outflow Control Gate         Silde gate or similar means to stop the discharge of impounded water           Maintenance and Service Manual Required for every SWMF         Signage           Signage         Required for every SWMF           Minimum Sizing         2.0 ha at normal water level for constructed wetlands           Z(H):1(V) for a reas normal or infrequently covered by water         Side Slopes           Side Slopes         Si(H):1(V) for a confined spaces or areas with extreme topography           Minimum Depth         2.5 m between normal water level           Side Slopes         Si(H):1(V) for confined spaces or areas with extreme topography           Inlet/Outlet Spacing         Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-circuiting           Inlet and Outlets         Fully submerged with the pipe crown being 1.0 m below the normal water level           Stormwater Management Facilities (SWMFs) - Dry Ponds         -7% (1.0% or greater is preferred)           Minimum Slope of Pond Bottom         -7% (1.0% or greater is preferred)           Side Slopes         Side Slopes           Minimum Slope of Pond Bottom         -7% (1.0% or greater is preferred)           Minimum Slope         -7% (1.0% or greater is preferred)           Minimum Slo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stormwater Management Facilities (SWMFs) - Wet Pond and Constr | ructed Wetlands                                                                                                           |
| Outflow Control Gate         Slide gate or similar means to stop the discharge of impounded water           Maintenance and service Manual<br>Required for every SWMF         Signage Required for safety           Minimum Sizing 2.0 ha at normal water level for constructed wetlands         (H):1(V) for confined spaces or areas with extreme topography           Side Slopes         3(H):1(V) for confined spaces or areas with extreme topography           Minimum Depth 12.5 m between normal water level           Si(H):1(V) for confined spaces or areas with extreme topography           Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-<br>circuiting           Inter/Outlets         Fully submerged with the pipe crown being 1.0 m below the normal water level           Stormwater Management Facilities (SWMFs) - Dry Ponds         0.7% (1.0% or greater is preferred)           Minimum Slope of Pond Bottom         0.7% (1.0% or greater is preferred)           T(H):1(V) within public property         Side Slope           Side Slope         Side Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outflow Control Works                                          | Outlet from a SWMF must incorporate appropriate means for control of outflow                                              |
| Maintenance and Service Manual       Required for servy SWMF         Signage       Required for safety         Minimum Sizing       2.0 has a normal water level for constructed wetlands         7(H):1(V) for 1 on below normal water level       5(H):1(V) for or 1.0 m below normal water level         Side Slopes       3(H):1(V) for 0.0 m below normal water level         Stide:1(V) for or onfined spaces or areas with extreme topography       5(H):1(V) for or onfined spaces or areas with extreme topography         Inlet/Outlet Spacing       2.5 m between normal water level and the bottom of the pond         Inlet and Outlets       Fully submerged with the pipe crown being 1.0 m below the normal water level         Stormwater Management Facilities (SWMFs) - Dry Ponds       3.0 m (measured from the invert elevation of the outlet pipe)         Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         7(H):1(V) within private property       5(H):1(V) within private property         Side Slopes       7(H):1(V) within private property         Swales Crossing Several Properties       Minimum Depth         Maximum Logically separated around the perimeter and distanced as far as possible to avoid short-circuiting         Minimum Depth       150 mm         Maximum clear Despecing Several Properties       400 mm diameter         Swales Crossing Several Properties       150 mm         Minimum Depth <td>Outflow Control Gate</td> <td>Slide gate or similar means to stop the discharge of impounded water</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outflow Control Gate                                           | Slide gate or similar means to stop the discharge of impounded water                                                      |
| Number of the safety           Minimum Sizing         Required for safety           Minimum Sizing         2.0 ha at normal water level for constructed wetlands           Side Slopes         Side Slopes           Minimum Deth         2.5 m between normal water level and the bottom of the pond           Inlet and Outlets         Coacted to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-<br>circuiting           Inlet and Outlets         Fully submerged with the pipe crown being 1.0 m below the normal water level           Stormwater Management Facilities (SWMFs) - Dry Ponds         To (1.0% or greater is preferred)           Minimum Slope of Pond Bottom         O''s (1.0% or greater is preferred)           Minimum Slope of Pond Bottom         Side Slopes           Side Slopes         Z(H):1(V) within private property           Required rate around the perimeter and distanced as far as possible to avoid short-circuiting           Minimum Size         Maximum clear bar spacing of 150 mm           Maximum Viele Slope         Minimum Slope           YH):1(V) within public property         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintenance and Service Manual                                 | Required for every SWMF                                                                                                   |
| Minimum Sizing       2.0 ha at normal water level for constructed wetlands         Z(H):3(U) for areas normal or infrequently covered by water         Side Slopes       3(H):1(U) for confined spaces or areas with extreme topography         Minimum Depth       2.5 m between normal water level and the bottom of the pond         Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-circuiting         Inlet/Outlet Spacing       Fully submerged with the pipe crown being 1.0 m below the normal water level         Stormwater Management Facilities (SWMFs) - Dry Ponds       3.0 m (measured from the invert elevation of the outlet pipe)         Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         Z(H):1(V) within private property       [H]:1(V) within private property         Require grates provided over openings       [Maximum clear bar spacing of 150 mm         Maximum velocity through the grate = 1.0 m/s       Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting         Culverts       400 mm diameter       150 mm         Maximum Side Slope       150 mm    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signage                                                        | Required for safety                                                                                                       |
| T(H):1(V) for areas normal or infrequently covered by water         3(H):1(V) for 1.0 m below normal water level         5(H):1(V) for confined spaces or areas with extreme topography         Minimum Depth       2.5 m between normal water level and the bottom of the pond         Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-circuiting         Inlet/Outlet Spacing       Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-circuiting         Stormwater Management Facilities (SWMFs) - Dry Ponds       Fully submerged with the pipe crown being 1.0 m below the normal water level         Stormwater Management Facilities (SWMFs) - Dry Ponds       0.7% (1.0% or greater is preferred)         Maximum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         (H):1(V) within private property       5(H):1(V) within private property         Side Slopes       T(H):1(V) within private property         Side Slopes       Maximum elecit through the grate = 1.0 m/s         Munimum Slope of Properties       400 mm diameter         Culverts       400 mm diameter         Minimum Side Slope       150 mm         Minimum Side Slope       400 mm diameter         Swales Crossing Several Properties       150 mm         Minimum Depth       150 mm         Grassed Swales Servin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Minimum Sizing                                                 | 2.0 ha at normal water level for constructed wetlands                                                                     |
| Side Slopes       3(H):1(V) for 0.0 m below normal water level         5(H):1(V) for confined spaces or areas with extreme topography         Confined spaces or areas with extreme topography         1       Side Slopes         5(H):1(V) for confined spaces or areas with extreme topography         Confined spaces or areas with extreme topography         1       Side Slopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                | 7(H):1(V) for areas normal or infrequently covered by water                                                               |
| S(H):1(V) for confined spaces or areas with extreme topography         Minimum Depth       2.5 m between normal water level and the bottom of the pond         Inlet/Outlet Spacing       Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-<br>circuiting         Inlet and Outlets       Fully submerged with the pipe crown being 1.0 m below the normal water level         Stormwater Management Facilities (SWMFs) - Dry Ponds       Maximum Live Storage         Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         Y(H):1(V) within private property       S(H):1(V) within private property         Side Slopes       7(H):1(V) within public property         Require grates provided over openings       Maximum clear bar spacing of 150 mm         Maximum Clear bar spacing of 150 mm       Maximum velocity through the grate = 1.0 m/s         Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting       Maximum Slope of Ponde         Swales Crossing Several Properties       400 mm diameter         Swales Crossing Lots on Both Sides       150 mm         Grassed Swales Serving Lots on Both Sides       41(H):1(V)         Minimum Depth       150 mm         Minimum Minge Slope       1.5%         Grassed Swales Serving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Side Slopes                                                    | (H):1(V) for 1.0 m below normal water level                                                                               |
| Minimum Dept       2.5 m between normal water level and the bottom of the pond         Inlet/Outlet Spacing       Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-circuiting         Inlet and Outlets       Fully submerged with the pipe crown being 1.0 m below the normal water level         Stormwater Management Facilities (SWMFs) - Dry Ponds       0.7% (1.0% or greater is preferred)         Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         Side Slope       7(H):1(V) within private property         Side Slope       7(H):1(V) within public property         Kequire grates provided over openings       Maximum clear bar spacing of 150 mm         Maximum Size       400 mm diameter         Swales Crossing Several Properties       150 mm         Minimum Dept       150 mm         Maximum Live Slope       150 mm         Grassed Swales Serving Lots on Both Sides       150 mm         Minimum Dept       150 mm         Maximum Wide Slope       150 mm         Minimum Dept       150 mm         Minimum Dept       150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                | 5(H):1(V) for confined spaces or areas with extreme topography                                                            |
| Inlet/Outlet Spacing         Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short-<br>circuiting           Inlet and Outlets         Full submerged with the pipe crown being 1.0 m below the normal water level           Stormwater Management Facilities (SWMFs) - Dry Ponds         Image and the pipe crown being 1.0 m below the normal water level           Maximum Live Storage         3.0 m (measured from the invert elevation of the outlet pipe)           Minimum Slope of Pond Bottom         0.7% (1.0% or greater is preferred)           7(H):1(V) within private property         5(H):1(V) within prublic property           Side Slopes         7(H):1(V) within prublic property           Sector of the out of the primeter and distanced as far as possible to avoid short-circuiting           Namium clear bar spacing of 150 mm           Maximum Side Slopes           Culverts           Minimum Size           Minimum Depth           Swales Crossing Several Properties           Minimum Depth           Stor m           Maximum Side Slope           Grassed Swales Serving Lots on Both Sides           Minimum Depth           Minimum Depth           Minimum Depth           Minimum Depth           Minimum Depth           Minimum Depth           Minimum Depth <td>Minimum Depth</td> <td>2.5 m between normal water level and the bottom of the pond</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum Depth                                                  | 2.5 m between normal water level and the bottom of the pond                                                               |
| Inlet/Outlet Spacing         circuiting           Inlet and Outlets         Fully submerged with the pipe crown being 1.0 m below the normal water level           Stormwater Management Facilities (SWMFs) - Dry Ponds         Image of Pond Bottom           Maximum Live Storage         3.0 m (measured from the invert elevation of the outlet pipe)           Maintum Side Storage         3.0 m (measured from the invert elevation of the outlet pipe)           Side Storage         0.7% (1.0% or greater is preferred)           7(H):1(V) within private property         5(H):1(V) within public property           Side Storage         Require grates provided over openings           Maximum clear bar spacing of 150 mm         Maximum clear bar spacing of 150 mm           Maximum Side Storage         400 mm diameter           Swales Crossing Several Properties         400 mm diameter           Swales Crossing Several Properties         150 mm           Grassed Swales Serving Lots on Both Sides         150 mm           Grassed Swales Serving Lots on Both Sides         150 mm           Minimum Deep H         150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                | Located to maximum detention time and circulation. Distanced as far as possible from each other to avoid hydraulic short- |
| Inlet and Outlets         Fully submerged with the pipe crown being 1.0 m below the normal water level           Stormwater Management Facilities (SWMFs) - Dry Ponds         Maximum Live Storage           Maximum Slope of Pond Bottom         0.7% (1.0% or greater is preferred)           Minimum Slope of Pond Bottom         0.7% (1.0% or greater is preferred)           Side Slope         7(H):1(V) within private property           Side Slope         7(H):1(V) within public property           Side Slope         7(H):1(V) within public property           Inlets and Outlets         Maximum clear bar spacing of 150 mm           Maximum Size         Maximum velocity through the grate = 1.0 m/s           Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting           Culverts         400 mm diameter           Swales Crossing Several Properties         150 mm           Minimum Size         400 mm diameter           Swales Serving Lots on Both Sides         1.5%           Grassed Swales Serving Lots on Both Sides         150 mm           Minimum Dept         150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inlet/Outlet Spacing                                           | circuiting                                                                                                                |
| Stormwater Management Facilities (SWMFs) - Dry Ponds<br>Maximum Live Storage<br>Minimum Slope of Pond Bottom<br>Side Slopes<br>Side Slopes<br>Inlets and Outles<br>Culverts<br>Culverts<br>Swales Crossing Several Properties<br>Minimum Depth<br>Storm Minimum Depth<br>Minimum Depth<br>Storm Minimum Side Slope<br>Minimum Depth<br>150 mm<br>Maximum Logitudinal Slope<br>Minimum Depth<br>150 mm<br>Maximum Logitudinal Slope<br>Minimum Depth<br>150 mm<br>Maximum Side Slope<br>Minimum Depth<br>150 mm<br>Maximum Side Slope<br>Minimum Depth<br>150 mm<br>Maximum Side Slope<br>Minimum Depth<br>150 mm<br>Maximum Side Slope<br>Minimum Depth<br>150 mm<br>Maximum Longitudinal Slope<br>Minimum Depth<br>150 mm<br>Maximum Side Slope<br>Minimum Depth<br>150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inlet and Outlets                                              | Fully submerged with the pipe crown being 1.0 m below the normal water level                                              |
| Maximum Live Storage       3.0 m (measured from the invert elevation of the outlet pipe)         Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         Side Slopes       7(H):1(V) within private property         Side Slopes       7(H):1(V) within public property         Require grates provided over openings       Maximum clear bar spacing of 150 mm         Maximum Slope to Yond Bottom       Maximum clear bar spacing of 150 mm         Culverts       Maximum slope to Yond Bottom         Swales Crossing Several Properties       400 mm diameter         Swales Crossing Several Properties       150 mm         Maximum Side Slope       150 mm         Grassed Swales Serving Lots on Both Sides       1.5%         Grassed Swales Serving Lots on Both Sides       150 mm         Maximum Side Slope       4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stormwater Management Facilities (SWMFs) - Dry Ponds           |                                                                                                                           |
| Minimum Slope of Pond Bottom       0.7% (1.0% or greater is preferred)         Side Slope       7(H):1(V) within private property         Side Slope       7(H):1(V) within public property         Inlets and Outlets       Require grates provided over openings         Maximum clear bar spacing of 150 mm       Maximum velocity through the grate = 1.0 m/s         Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting         Culverts       400 mm diameter         Swales Crossing Several Properties       150 mm         Maximum Side Slope       4(H):1(V)         Grassed Swales Serving Lots on Both Sides       1.5%         Minimum Depth       150 mm         Minimum Depth       150 mm         Maximum Side Slope       4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum Live Storage                                           | 3.0 m (measured from the invert elevation of the outlet pipe)                                                             |
| Side Slope       7(H):1(V) within private property         Side Slope       7(H):1(V) within private property         Side Slope       5(H):1(V) within public property         Inlets and Outlets       Require grates provided over openings         Maximum velocity through the grate = 1.0 m/s       Maximum velocity through the grate = 1.0 m/s         Munimum Size       400 mm diameter         Swales Crossing Several Properties       400 mm diameter         Maximum Size       400 mm diameter         Maximum Longitudinal Slope       150 mm         Grassed Swales Serving Lots on Both Sides       1.5%         Minimum Depth       150 mm         Maximum Side Slope       400 mm diameter         Minimum Longitudinal Slope       1.5%         Grassed Swales Serving Lots on Both Sides       400 mm         Minimum Depth       150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum Slope of Pond Bottom                                   | 0.7% (1.0% or greater is preferred)                                                                                       |
| Side Slopes       5(H):1(V) within public property         Require grates provided over openings         Maximum clear bar spacing of 150 mm         Maximum velocity through the grate = 1.0 m/s         Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting         Culverts       400 mm diameter         Swales Crossing Several Properties       400 mm diameter         Swales Crossing Lots on Both Sides       4(H):1(V)         Grassed Swales Serving Lots on Both Sides       150 mm         Minimum Longitudinal Slope       4(H):1(V)         Minimum Side Slope       4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | (H):1(V) within private property                                                                                          |
| Inlets and Outlets       Require grates provided over openings         Require grates provided over openings         Maximum clear bar spacing of 150 mm         Maximum velocity through the grate = 1.0 m/s         Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting         Culverts         Minimum Size         Swales Crossing Several Properties         Minimum Depth         150 mm         Maximum Longitudinal Slope         4(H):1(V)         Grassed Swales Serving Lots on Both Sides         Minimum Depth         150 mm         Maximum Side Slope         4(H):1(V)         Maximum Depth         150 mm         Minimum Depth         Minimum Depth         150 mm         Maximum Side Slope         4(H):1(V)         Maximum Side Slope         4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Side Slopes                                                    | 5(H):1(V) within public property                                                                                          |
| Inlets and Outlets         Maximum clear bar spacing of 150 mm           Maximum clear bar spacing of 150 mm           Maximum velocity through the grate = 1.0 m/s           Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting           Culverts           Maximum Size           Mom minum Size           Volume           Maximum Size           Swales Crossing Several Properties           Minimum Depth           150 mm           Maximum Side Slope           4(H):1(V)           Grassed Swales Serving Lots on Both Sides           Grassed Swales Serving Lots on Both Sides           Maximum Side Slope           4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | Require grates provided over openings                                                                                     |
| Inlets and Outlets         Maximum velocity through the grate = 1.0 m/s           Maximum velocity through the grate = 1.0 m/s         Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting           Culverts         400 mm diameter           Swales Crossing Several Properties         400 mm diameter           Maximum Depth         150 mm           Maximum Longitudinal Slope         4(H):1(V)           Grassed Swales Serving Lots on Both Sides         150 mm           Minimum Depth         150 mm           Maximum Side Slope         4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | Maximum clear bar spacing of 150 mm                                                                                       |
| Description         Description           Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting           Culverts         Minimum Size           Minimum Size         400 mm diameter           Swales Crossing Several Properties         Intercent of the second of the s                                                                                                                                                                   | Inlets and Outlets                                             | Maximum velocity through the grate = 1.0 m/s                                                                              |
| Culverts     Description       Minimum Size     400 mm diameter       Swales Crossing Several Properties     0       Minimum Depth     150 mm       Maximum Side Slope     4(H):1(V)       Minimum Longitudinal Slope     1.5%       Grassed Swales Serving Lots on Both Sides     0       Minimum Depth     150 mm       Minimum Depth     150 mm       Minimum Longitudinal Slope     4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                | Physically separated around the perimeter and distanced as far as possible to avoid short-circuiting                      |
| Minimum Size       400 mm diameter         Swales Crossing Several Properties          Minimum Depth       150 mm         Maximum Side Slope       4(H):1(V)         Minimum Longitudinal Slope       1.5%         Grassed Swales Serving Lots on Both Sides          Minimum Depth       150 mm         Minimum Depth       150 mm         Minimum Depth       150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Culverts                                                       |                                                                                                                           |
| Swales Crossing Several Properties       Image: Several Properties         Minimum Depth       150 mm         Maximum Side Slope       4(H):1(V)         Grassed Swales Serving Lots on Both Sides       1.5%         Minimum Depth       150 mm         Minimum Depth       150 mm         Minimum Depth       150 mm         Maximum Side Slope       4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum Size                                                   | 400 mm diameter                                                                                                           |
| Minimum Depth       150 mm         Maximum Side Slope       4(H):1(V)         Minimum Longitudinal Slope       1.5%         Grassed Swales Serving Lots on Both Sides       150 mm         Minimum Depth       150 mm         Maximum Side Slope       4(H):1(V)         Maximum Side Slope       4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Swales Crossing Several Properties                             |                                                                                                                           |
| Maximum Side Slope 4(H):1(V)<br>Minimum Longitudinal Slope 1.5%<br>Grassed Swales Serving Lots on Both Sides<br>Minimum Depth 150 mm<br>Maximum Side Slope 4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum Depth                                                  | 150 mm                                                                                                                    |
| Minimum Longitudinal Slope 1.5% Grassed Swales Serving Lots on Both Sides Minimum Depth 150 mm Maximum Side Slope 4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maximum Side Slope                                             | 4(H):1(V)                                                                                                                 |
| Grassed Swales Serving Lots on Both Sides<br>Minimum Depth 150 mm<br>Maximum Side Slope 4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum Longitudinal Slope                                     | 1.5%                                                                                                                      |
| Minimum Depth 150 mm<br>Maximum Side Slope 4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Grassed Swales Serving Lots on Both Sides                      |                                                                                                                           |
| Maximum Side Slope 4(H):1(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum Depth                                                  | 150 mm                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum Side Slope                                             | 4(H):1(V)                                                                                                                 |





|--|

#### The City of Edmonton Design and Construction Standards Volume 3 Drainage (March 2015) - Review Summary

| Parameter                                                          | Design Criteria                                                                                                           |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Minimum Longitudinal Slope                                         | 1.5%                                                                                                                      |  |  |  |  |  |  |  |  |
| Grassed Swales with Concrete Gutter                                |                                                                                                                           |  |  |  |  |  |  |  |  |
| Range of Depth 75 mm to 150 mm                                     |                                                                                                                           |  |  |  |  |  |  |  |  |
| Range of Width 500 mm to 610 mm                                    |                                                                                                                           |  |  |  |  |  |  |  |  |
| Maximum Side Slope 4(H):1(V)                                       |                                                                                                                           |  |  |  |  |  |  |  |  |
| Minimum Thickness 100 mm                                           |                                                                                                                           |  |  |  |  |  |  |  |  |
| OTHER                                                              |                                                                                                                           |  |  |  |  |  |  |  |  |
| Mike Urban (or Mouse) and Mike 21 models are recommended for u     | Aike Urban (or Mouse) and Mike 21 models are recommended for use in the design of dual (major and minor) drainage systems |  |  |  |  |  |  |  |  |
| The 4-hour Chicago distribution hyetographs should be used for ana | lysis of major and minor conveyance systems by computer simulation                                                        |  |  |  |  |  |  |  |  |





| Table B-3                                                                       |
|---------------------------------------------------------------------------------|
| City of St. Albert Municipal Engineering Standards (April 2013)- Review Summary |

| Parameter                                                        | Design Criteria                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|---------|----------|----------|---------|---------|---|--|--|--|--|
| MINOR SYSTEM                                                     |                                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Design Storm Event                                               | 1:5 Year                                                                                                 |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Calculation Method                                               | Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha)                                      |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  | Parks, Reserves, Grassed areas = 0.15                                                                    |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  | Single Family Residential = 0.50                                                                         |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Runoff Coefficients - C                                          | Multi-Fam                                                                                                | nilv Re                                                   | esidential = 0.7 | 70      |          |          |         |         |   |  |  |  |  |
|                                                                  | Commerci                                                                                                 | ial = 0                                                   | 0.70             | -       |          |          |         |         |   |  |  |  |  |
|                                                                  | Paved Are                                                                                                | as an                                                     | d Roofs = 0.95   |         |          |          |         |         |   |  |  |  |  |
|                                                                  | C x 1.2 for return periods between 10 and 25 years<br>C x 1.2 for return periods between 25 and 50 years |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Runoff Coefficients for Design Storm Events with a Return Period |                                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Greater than 10 Years                                            | C x 1.25 for return periods greater than 50 years                                                        |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Time of Concentration                                            | 0 // 2120 / 0                                                                                            | A 1.25 for return perious greater than 50 years           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           | Design           | Inlot   |          | Impervi  | ousness |         |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           | Time             |         | 200/     | 500      |         | > 700/  |   |  |  |  |  |
|                                                                  | 1                                                                                                        |                                                           | Time             | (4)     | 30%      | 50%      | /0      | > /0%   | _ |  |  |  |  |
|                                                                  |                                                                                                          | 5                                                         | $t_i \leq 8.0$   | ha      | 8.0 min  | 8.0 r    | nın     | 5.0 min |   |  |  |  |  |
|                                                                  |                                                                                                          | VI.e                                                      | $8.0 < t_i <$    | 40 ha   | 9.2 min  | 9.2 n    | nin     | 6.0 min |   |  |  |  |  |
|                                                                  |                                                                                                          | 4                                                         | $t_i \ge 40$     | ha      | 10.4 min | 10.4     | min     | 7.3 min |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Rainfall Data                                                    | Edmonton City Centre Airport IDF Curve                                                                   |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Gravity Sewer Mains                                              |                                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Minimum Pipe Diameter                                            | 300 mm                                                                                                   |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Design Mean Flow Velocity                                        | 0.9 m/s to 1.0 m/s                                                                                       |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Minimum Velocity                                                 | / 0.6 m/s                                                                                                |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Maximum Velocity                                                 | y 3.0 m/s                                                                                                |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
| Manning's r                                                      | 's n 0.013                                                                                               |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  | 150 mm d                                                                                                 |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  | 300 mm d                                                                                                 | liamet                                                    | ter = 0.22%      |         |          |          |         |         |   |  |  |  |  |
| Minimum Pipe Slope                                               | 375 mm diameter = 0.15%                                                                                  |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  | 450 mm diameter = 0.12%                                                                                  |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  | ≥ 525 mm                                                                                                 | i diam                                                    | neter = 0.10%    |         |          |          |         |         |   |  |  |  |  |
| Minimum Pipe Slope (Curved Alignment)                            |                                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  |                                                                                                          | C/L Sewer Increase Minimum Pipe Slope Minimum Manhole Spa |                  |         |          |          |         |         |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  | (m)     | (70)     | <u> </u> |         | (ш)     |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  | 92-100  | 50       |          |         | 92      |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  | 100-150 | 40       |          |         | 95      |   |  |  |  |  |
|                                                                  |                                                                                                          | 150-200 30                                                |                  |         |          |          |         | 105     |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  | 200-250 | 20       |          |         | 115     |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  | > 300   | 0        |          |         | 135     |   |  |  |  |  |
|                                                                  |                                                                                                          |                                                           |                  | 200     |          |          |         |         |   |  |  |  |  |
| Storm Sewer Trunk Mains                                          |                                                                                                          |                                                           |                  |         |          |          |         |         |   |  |  |  |  |





Table B-3 City of St. Albert Municipal Engineering Standards (April 2013)- Review Summary

| Parameter                                                | Design Criteria                                                                                                              |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Servicing Area                                           | > 30 ha                                                                                                                      |  |  |  |  |  |  |  |  |  |
|                                                          | Accommodate, without surcharge, the design flow multiplied by 1.25                                                           |  |  |  |  |  |  |  |  |  |
|                                                          |                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Surcharge of Sewer Pipes                                 | Where the storm truck will receive both uncontrolled flow from areas $\geq$ 30 ha and controlled discharge from stormwater   |  |  |  |  |  |  |  |  |  |
|                                                          | management facilities, the pipes shall be designed to accommodate the anticipated uncontrolled design flow multiplied by     |  |  |  |  |  |  |  |  |  |
|                                                          | 1.25 plus the design maximum outflow rates from the stormwater management facilities                                         |  |  |  |  |  |  |  |  |  |
| Horizontal Alignment                                     | 3.0 m horizontally from any water main and 1.8 m horizontally from any sanitary sewer main or gas line                       |  |  |  |  |  |  |  |  |  |
| Manhole Spacing                                          |                                                                                                                              |  |  |  |  |  |  |  |  |  |
|                                                          | 135 m for sewers less than 1200 mm in diameter                                                                               |  |  |  |  |  |  |  |  |  |
| Maximum Distance                                         | 500 m for sewers 1200 mm in diameter or greater                                                                              |  |  |  |  |  |  |  |  |  |
| Catchbasins                                              |                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Maximum Spacing                                          | 120 m                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Minimum Pipe Diameter                                    | 250 mm                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Minimum Velocity                                         | 0.6 m/s                                                                                                                      |  |  |  |  |  |  |  |  |  |
| ,<br>Maximum Velocity                                    | 3.0 m/s                                                                                                                      |  |  |  |  |  |  |  |  |  |
| Manning's n                                              | 0.013                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Minimum Slope                                            | 1.0%                                                                                                                         |  |  |  |  |  |  |  |  |  |
| Maximum Length                                           | 30 m                                                                                                                         |  |  |  |  |  |  |  |  |  |
| Minimum Depth of Cover                                   | 1.5 m                                                                                                                        |  |  |  |  |  |  |  |  |  |
| MAJOR SYSTEM                                             |                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Design Storm Event                                       | 1:100 Year                                                                                                                   |  |  |  |  |  |  |  |  |  |
| Mavimum Danth of Dack Flaus and Danding                  | 150 mm on arterial roadways                                                                                                  |  |  |  |  |  |  |  |  |  |
| Maximum Depth of Peak Flows and Ponding                  | 350 mm below the lowest anticipated landscape grade or opening along adjacent lots and buildings                             |  |  |  |  |  |  |  |  |  |
| Manninglan                                               | n = 0.013 for roadways                                                                                                       |  |  |  |  |  |  |  |  |  |
| ivianning s n                                            | n = 0.050 for grassed boulevards                                                                                             |  |  |  |  |  |  |  |  |  |
| Culverts                                                 |                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Minimum Size                                             | 400 mm diameter                                                                                                              |  |  |  |  |  |  |  |  |  |
| Maximum Clear Bar Spacing                                | 150 mm                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Stormwater Management Facilities - Wet Ponds             |                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Minimum Surface Area at Normal Water Level               | 2.0 ha                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Minimum Depth of Pond at Normal Water Level              | 2.5 m                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Minimum Width of the Water Surface at Normal Water Level | 25 m                                                                                                                         |  |  |  |  |  |  |  |  |  |
|                                                          | Fully submerged with pipe obverts a minimum of 1.0 m below the normal water level                                            |  |  |  |  |  |  |  |  |  |
|                                                          | Inverts a minimum of 150 mm above the lake bottom                                                                            |  |  |  |  |  |  |  |  |  |
| Inlate and Outlate                                       | Located as far from each other as possible to avoid hydraulic short-circuiting                                               |  |  |  |  |  |  |  |  |  |
|                                                          | Normal operating level shall be at or below the pipe invert at the nearest manhole on the inlet storm sewer main             |  |  |  |  |  |  |  |  |  |
|                                                          | Anticipated high water level during a 1:5 year rainfall event shall be at or below the pipe obvert at the nearest manhole on |  |  |  |  |  |  |  |  |  |
|                                                          | the inlet storm sewer main                                                                                                   |  |  |  |  |  |  |  |  |  |
| Emergency Overflow                                       | Required to redirect flows in excess of the design peak flow                                                                 |  |  |  |  |  |  |  |  |  |
| Normal Water Level                                       | Set at a minimum of 300 mm below the lowest basement weeping tile of any adjacent buildings                                  |  |  |  |  |  |  |  |  |  |
| Side Slopes                                              | Maximum of 3(H):1(V) on the pond exterior                                                                                    |  |  |  |  |  |  |  |  |  |





Table B-3 City of St. Albert Municipal Engineering Standards (April 2013)- Review Summary

| Parameter                                    | Design Criteria                                                           |
|----------------------------------------------|---------------------------------------------------------------------------|
|                                              | Maximum of 5(H):1(V) on the pond interior                                 |
| Best Management Practices                    | Refer to Alberta Environment                                              |
| Stormwater Management Facilities - Dry Ponds |                                                                           |
| Maximum Active Storage Depth                 | 1.5 m                                                                     |
| Inlots and Outlots                           | Located as far as possible away from each other to avoid short-circuiting |
|                                              | Must include gratings with a maximum clear bar spacing of 150 mm          |
| Emergency Overflow                           | Required to redirect flows in excess of the design peak flow              |
| Minimum Slope of Pond Bottom                 | 2%                                                                        |
| Drainage Swales                              |                                                                           |
| Minimum Width of Right-of-Ways or Easements  | 3 m                                                                       |
| Minimum Slope                                | 2%                                                                        |





Table B-4 Sturgeon County General Municipal Servicing Standards (May 2009) - Review Summary

| MINOR SYSTEM         Design Storm Event       1:5 Year         Calculation Method       Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha)         Rainfall Data       Edmonton Municipal Airport - IDF Period 1914-1995         Runoff Coefficients       CR-1 = 0.2         Runoff Coefficients       CR-2, CR-E = 0.3         HR = 0.4       HR = 0.4         Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1         Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       Maximum 10 minutes         Minimum Pipe Size for Storm Sewer Main       300 mm diameter | Parameter                                                  | Design Criteria                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| Design Storm Event       1:5 Year         Calculation Method       Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha)         Rainfall Data       Edmonton Municipal Airport - IDF Period 1914-1995         Runoff Coefficients       CR-1 = 0.2         Runoff Coefficients       CR-2, CR-E = 0.3         HR = 0.4       Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1       Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3       Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       Maximum 10 minutes         Minimum Pipe Size for Storm Sewer Main       300 mm diameter             | MINOR SYSTEM                                               |                                                                     |
| Calculation Method       Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha)         Rainfall Data       Edmonton Municipal Airport - IDF Period 1914-1995         Runoff Coefficients       CR-1 = 0.2         Runoff Coefficients       CR-2, CR-E = 0.3         HR = 0.4       Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1       Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3       Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       00 mm diameter                                                                                                                                | Design Storm Event                                         | 1:5 Year                                                            |
| Rainfall Data       Edmonton Municipal Airport - IDF Period 1914-1995         Runoff Coefficients       CR-1 = 0.2         Runoff Coefficients       CR-2, CR-E = 0.3         HR = 0.4       Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1       Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3       Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       0.0 mm diameter                                                                                                                                                                                                                                    | Calculation Method                                         | Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha) |
| Runoff Coefficients       CR-1 = 0.2         Runoff Coefficients       CR-2, CR-E = 0.3         HR = 0.4       Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1       Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3       Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       00 mm diameter                                                                                                                                                                                                                                                                                                                   | Rainfall Data                                              | Edmonton Municipal Airport - IDF Period 1914-1995                   |
| Runoff Coefficients       CR-2, CR-E = 0.3         HR = 0.4       Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1       Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3       Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       0         Minimum Pipe Size for Storm Sewer Main       300 mm diameter                                                                                                                                                                                                                                                                                                        |                                                            | CR-1 = 0.2                                                          |
| HR = 0.4         Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1         Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       00 mm diameter                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | CR-2, CR-E = 0.3                                                    |
| Runoff Coefficients       Grassed Areas (Parks, Playgrounds) = 0.15         Undeveloped Land (Farmland) = 0.1         Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing       00 mm diameter                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            | HR = 0.4                                                            |
| Undeveloped Land (Farmland) = 0.1         Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Runoff Coefficients                                        | Grassed Areas (Parks, Playgrounds) = 0.15                           |
| Pavement, Concrete, Buildings = 0.9         Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            | Undeveloped Land (Farmland) = 0.1                                   |
| Gravel Roadways = 0.3         Time of Concentration       Maximum 10 minutes         Pipe Sizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | Pavement, Concrete, Buildings = 0.9                                 |
| Time of Concentration     Maximum 10 minutes       Pipe Sizing     Minimum Pipe Size for Storm Sewer Main       Minimum Pipe Size for Storm Sewer Main     300 mm diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | Gravel Roadways = 0.3                                               |
| Pipe Sizing Minimum Pipe Size for Storm Sewer Main 300 mm diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time of Concentration                                      | Maximum 10 minutes                                                  |
| Minimum Pipe Size for Storm Sewer Main 300 mm diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pipe Sizing                                                |                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum Pipe Size for Storm Sewer Main                     | 300 mm diameter                                                     |
| Minimum Pipe Size for Foundation Drains Accommodating Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Pipe Size for Foundation Drains Accommodating Flow |                                                                     |
| from Weeping Tiles Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from Weeping Tiles Only                                    | 150 mm diameter                                                     |
| Minimum Pipe Size for Catchbasins Leads 250 mm diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimum Pipe Size for Catchbasins Leads                    | 250 mm diameter                                                     |
| Manning's' n 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manning's' n                                               | 0.013                                                               |
| Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Velocity                                                   |                                                                     |
| Minimum Full-Flow Velocity 0.6 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum Full-Flow Velocity                                 | 0.6 m/s                                                             |
| Maximum Full-Flow Velocity 3.0 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Maximum Full-Flow Velocity                                 | 3.0 m/s                                                             |
| 300 mm diameter = 0.194%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 300 mm diameter = 0.194%                                            |
| 375 mm diameter = 0.145%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 375 mm diameter = 0.145%                                            |
| 450 mm diameter = 0.114%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 450 mm diameter = 0.114%                                            |
| 525 mm diameter = 0.092%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 525 mm diameter = 0.092%                                            |
| 600 mm diameter = 0.077%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 600 mm diameter = 0.077%                                            |
| 675 mm diameter = 0.065%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 675 mm diameter = 0.065%                                            |
| 750 mm diameter = 0.057%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 750 mm diameter = 0.057%                                            |
| 900 mm diameter = 0.045%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | 900 mm diameter = 0.045%                                            |
| 1050 mm diameter = 0.036%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 1050 mm diameter = 0.036%                                           |
| 1200 mm diameter = 0.031%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum Ding Clang                                         | 1200 mm diameter = 0.031%                                           |
| 1350 mm diameter = 0.027%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum Pipe Slope                                         | 1350 mm diameter = 0.027%                                           |
| 1500 mm diameter = 0.023%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 1500 mm diameter = 0.023%                                           |
| 1650 mm diameter = 0.020%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 1650 mm diameter = 0.020%                                           |
| 1800 mm diameter = 0.018%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 1800 mm diameter = 0.018%                                           |
| 1950 mm diameter = 0.016%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 1950 mm diameter = 0.016%                                           |
| 2100 mm diameter = 0.015%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 2100 mm diameter = 0.015%                                           |
| 2250 mm diameter = 0.013%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 2250 mm diameter = 0.013%                                           |
| 2400 mm diameter = 0.012%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 2400 mm diameter = 0.012%                                           |
| 2550 mm diameter = 0.011%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 2550 mm diameter = 0.011%                                           |
| 2820 mm diameter = 0.010%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 2820 mm diameter = 0.010%                                           |





Table B-4 Sturgeon County General Municipal Servicing Standards (May 2009) - Review Summary

| Parameter                                                         | Design Criteria                                                                              |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                   | 300 mm diameter = 0.25%                                                                      |
|                                                                   | 375 mm diameter = 0.18%                                                                      |
| Minimum Pipe Slope for Curved Sewers                              | 450 mm diameter = 0.15%                                                                      |
|                                                                   | 525 mm diameter = 0.13%                                                                      |
|                                                                   | 600 mm diameter and greater = 0.10%                                                          |
| Minimum Slope for Catchbasins Leads                               | 1.0%                                                                                         |
| Minimum Depth of Cover                                            | 2.2 m for sewer main                                                                         |
|                                                                   | 1.5 m for catchbasins lead                                                                   |
| Manhole Spacing                                                   |                                                                                              |
| Sewers less than 1200 mm diameter                                 | 120 m                                                                                        |
| Sewers 1200 mm diameter to 1650 mm diameter                       | 500 m                                                                                        |
| Sewers larger than 1650 mm diameter                               | 800 m                                                                                        |
| Minimum Manhole Size                                              | 1200 mm inside diameter                                                                      |
| MAJOR SYSTEM                                                      |                                                                                              |
| Design Storm Event                                                | 1:100 Year                                                                                   |
| Calculation Method                                                | Rational Method (Area < 65 ha) or computer modelling (Area > 65 ha)                          |
| Rainfall Data                                                     | Edmonton Municipal Airport - IDF Period 1914-1995                                            |
| Stormwater Management Facilities - Wet Ponds and Lakes            |                                                                                              |
| High Water Level                                                  | 300 mm below the lowest building opening on adjacent lots                                    |
| Minimum Surface Area at Normal Water Level                        | 2 ha                                                                                         |
| Maximum Side Slones                                               | 3(H):1(V) from the lake bottom to 1 m below normal water level                               |
|                                                                   | 7(H):1(V) for 1 m below normal water level and above                                         |
| Minimum Depth from Normal Water Level to Lake Bottom              | 2.5 m                                                                                        |
| Inlet and Outlets                                                 | Fully submerged and at least 200 mm above the lake bottom and 1.0 m below normal water level |
| Overflow Channel                                                  | Required at the high water level                                                             |
| Stormwater Management Facilities - Dry Ponds                      |                                                                                              |
| Maximum Storage Depth                                             | 1.5 m from the invert of the outlet pipe                                                     |
| Minimum Pond Bottom Slope                                         | 1.0%                                                                                         |
| Maximum Side Slones                                               | 7(H):1(V) within private property                                                            |
|                                                                   | 5(H):1(V) within public property                                                             |
| Inlet and Outlets                                                 | Maximum bar spacing of 150 mm                                                                |
| Drainage Swales                                                   |                                                                                              |
| Minimum Clearance                                                 | 200 mm between the edge of a swale and property line                                         |
|                                                                   | 0.75% (on private property)                                                                  |
| Minimum Slope                                                     | 0.5% (on public property)                                                                    |
|                                                                   | 1.5% (without a concrete gutter)                                                             |
| Other                                                             |                                                                                              |
| The design of both the major and minor systems must meet the requ | irements outlined by Alberta Environment                                                     |



# APPENDIX B - LIDAR BOUNDARIES AND CATCHMENT AREAS (FIGURE B-1)





Legend:

| $\square$ |
|-----------|
|           |
|           |
|           |
| Ь         |

1m LiDAR Extent 15m LiDAR Extent **Catchment Areas** Town Boundary



### FIGURE No. B-1

TOWN OF BON ACCORD STORM MASTER PLAN UPDATE

LIDAR BOUNDARIES AND CATCHMENT AREAS

 
 AE PROJECT No.
 2019-3459

 SCALE
 1:9,000

 COORD. SYSTEM
 NAD 1983 3TM 114

 DATE
 2019 OCTOBER
 REV DESCRIPTION

ISSUED FOR FINAL

# APPENDIX C - EXISTING MINOR SYSTEM ASSESSMENT - DETAILED CALCULATIONS

|                                         | ASSOCIATED ENGINEERING ALBERTA LTD.<br>MUNICIPAL ENGINEERING GROUP |                |       |       |      |       |                   |                      |                |      |                               |        |                |           |           |                   |      |        |                            |                         |         |            |         |         |
|-----------------------------------------|--------------------------------------------------------------------|----------------|-------|-------|------|-------|-------------------|----------------------|----------------|------|-------------------------------|--------|----------------|-----------|-----------|-------------------|------|--------|----------------------------|-------------------------|---------|------------|---------|---------|
|                                         | STORM SEWER DESIGN CHART                                           |                |       |       |      |       |                   |                      |                |      |                               |        |                |           |           |                   |      |        |                            |                         |         |            |         |         |
|                                         | RATIONAL METHOD FOR CIRCULAR PIPE                                  |                |       |       |      |       |                   |                      |                |      |                               |        |                |           |           |                   |      |        |                            |                         |         |            |         |         |
| LOCATION                                | CATION Edmonton 2018 (COE, V, 2018) INITIAL CONCENTRATION TIME     |                |       |       |      |       |                   |                      |                |      | COE Standards IDF PARAMETERS: |        |                |           |           |                   |      |        |                            | DESIGNED BY Lisa Butler |         |            |         |         |
| CLIENT Town of Bon Accord RETURN PERIOD |                                                                    |                |       |       |      |       |                   |                      |                |      | 5                             |        | a=             | 24.568    |           |                   |      |        | REVISED BY Laurel Richards |                         |         |            |         |         |
| PROJECT Stormwater Master Plan          |                                                                    |                |       |       |      |       |                   |                      |                |      |                               |        | b=             | -0.735    | -         |                   |      |        |                            | PAGE                    | 1 OF    | 1          |         |         |
| PROJECT NO. <mark>2019-3459</mark>      |                                                                    |                |       |       |      |       |                   |                      |                |      |                               |        |                | c=        | 0.0900    |                   |      |        | DA                         | TE DESIGN               | V/CHECK | 5-Jul-19   |         |         |
| CATCHMENT DATA                          |                                                                    |                |       |       |      |       |                   | PIPE DE              | PE DESIGN DATA |      |                               |        |                |           |           |                   |      |        | PIPE PR                    | PIPE PROFILE            |         |            |         |         |
|                                         |                                                                    |                |       |       |      |       |                   |                      |                |      |                               |        |                |           |           |                   |      |        |                            |                         |         | Í          |         |         |
|                                         |                                                                    |                |       |       |      |       | INCREMENTAL       |                      |                | n    | SLOPE                         | SIZE   | FLOW           | WETTED    | HYDRAULIC | CAP.              | VEL. | LENGTH | TIME                       | UPSTRI                  | EAM MH  | DROP       | DOWNSTI | REAM MH |
| CATCHMEN <sup>®</sup>                   | I FROM                                                             | ТО             | LOCAL | RUNOF | F    | RAIN  | FLOW              |                      | PIPE           |      |                               |        |                |           |           |                   |      |        |                            |                         |         | 1          |         |         |
| NO.                                     | MH                                                                 | MH             | AREA  | COEFF | TC   | INT.  | CIA*0.00278       | CUMULATIV<br>F FL OW | TYPE           |      |                               |        | AREA           | PERIMETER | RADIUS    |                   |      |        | IN<br>PIPE                 | INVERT                  | RIM     | IN<br>PIPE | INVERT  | RIM     |
|                                         |                                                                    |                | ha    | (0)   | min  | nm/hr | m <sup>3</sup> /s | (m <sup>3</sup> /s)  |                |      | (%)                           | mm     | m <sup>2</sup> | m         |           | m <sup>3</sup> /s | m/s  | m      | min                        | m                       | m       | m          | m       | m       |
| 94                                      | S703A                                                              | ST703          | 3.20  | 0.70  | 5.00 | 89.08 | 0.55              | 0.55                 | PVC            | 0.01 | 0.03                          | 525.00 | 0.22           | 1.65      | 0.13      | 0.07              | 0.40 | 98.60  | 4.11                       | 697.945                 | 700.626 | 0.028      | 697.917 | 700.598 |
| 18                                      | ST715                                                              | ST714          | 0.70  | 0.73  | 5.00 | 89.08 | 0.13              | 0.13                 | VCT            | 0.01 | 1.04                          | 200.00 | 0.03           | 0.63      | 0.05      | 0.03              | 1.10 | 35.90  | 0.54                       | 699.510                 | 702.440 | 0.375      | 699.135 | 702.880 |
| 17                                      | ST714                                                              | ST713          | 0.01  | 0.95  | 5.00 | 89.08 | 0.00              | 0.13                 | VCT            | 0.01 | 0.29                          | 200.00 | 0.03           | 0.63      | 0.05      | 0.02              | 0.60 | 10.40  | 0.29                       | 698.960                 | 702.880 | 0.030      | 698.930 | 702.850 |
| 19                                      | ST713                                                              | ST712          | 0.01  | 0.95  | 5.00 | 89.08 | 0.00              | 0.13                 | VCT            | 0.01 | 0.50                          | 200.00 | 0.03           | 0.63      | 0.05      | 0.02              | 0.80 | 46.80  | 0.98                       | 698.930                 | 702.850 | 0.233      | 698.697 | 700.410 |
| 21                                      | ST712A                                                             | ST712          | 0.10  | 0.76  | 5.00 | 89.08 | 0.02              | 0.02                 | CONC           | 0.01 | 1.13                          | 200.00 | 0.03           | 0.63      | 0.05      | 0.03              | 1.20 | 30.40  | 0.42                       | 699.400                 | 701.160 | 0.345      | 699.055 | 700.410 |
| 22                                      | ST712                                                              | ST710          | 0.05  | 0.94  | 5.00 | 89.08 | 0.01              | 0.16                 | AC             | 0.01 | 0.63                          | 750.00 | 0.44           | 2.36      | 0.19      | 0.88              | 2.00 | 49.30  | 0.41                       | 698.697                 | 700.410 | 0.310      | 698.387 | 701.847 |
| 37                                      | ST711                                                              | ST710          | 2.00  | 0.64  | 5.00 | 89.08 | 0.32              | 0.32                 | CONC           | 0.01 | 0.04                          | 200.00 | 0.03           | 0.63      | 0.05      | 0.01              | 0.30 | 56.80  | 3.16                       | 698.860                 | 700.410 | 0.022      | 698.838 | 701.847 |
| 38                                      | ST710                                                              | ST709          | 0.10  | 0.65  | 5.00 | 89.08 | 0.02              | 0.49                 | CONC           | 0.01 | 0.08                          | 750.00 | 0.44           | 2.36      | 0.19      | 0.32              | 0.80 | 53.10  | 1.11                       | 698.410                 | 701.847 | 0.043      | 698.367 | 701.253 |
| 50                                      | ST709A                                                             | ST709          | 0.50  | 0.56  | 8.00 | 73.94 | 0.06              | 0.06                 | CONC           | 0.01 | 0.36                          | 300.00 | 0.07           | 0.94      | 0.08      | 0.06              | 0.90 | 122.20 | 2.26                       | 698.267                 | 700.810 | 0.434      | 697.833 | 701.253 |
| 51                                      | ST709                                                              | ST705          | 0.10  | 0.70  | 5.00 | 89.08 | 0.02              | 0.57                 | CONC           | 0.01 | 0.33                          | 750.00 | 0.44           | 2.36      | 0.19      | 0.64              | 1.50 | 46.50  | 0.52                       | 698.385                 | 701.253 | 0.155      | 698.230 | 700.500 |
| 55                                      | ST708                                                              | ST707          | 0.70  | 0.72  | 5.00 | 89.08 | 0.12              | 0.12                 | CONC           | 0.01 | 0.18                          | 375.00 | 0.11           | 1.18      | 0.09      | 0.07              | 0.70 | 72.10  | 1.72                       | 698.990                 | 700.370 | 0.131      | 698.859 | 700.680 |
| 54                                      | ST707                                                              | ST706          | 0.01  | 0.95  | 5.00 | 89.08 | 0.00              | 0.13                 | CONC           | 0.01 | 0.35                          | 375.00 | 0.11           | 1.18      | 0.09      | 0.10              | 1.00 | 50.60  | 0.84                       | 698.839                 | 700.680 | 0.175      | 698.664 | 700.180 |
| 53                                      | ST706                                                              | ST705          | 0.50  | 0.78  | 5.00 | 89.08 | 0.10              | 0.22                 | CONC           | 0.01 | 0.30                          | 375.00 | 0.11           | 1.18      | 0.09      | 0.10              | 0.90 | 21.60  | 0.40                       | 698.644                 | 700.180 | 0.064      | 698.580 | 700.500 |
| 52                                      | ST705                                                              | ST705A         | 0.01  | 0.95  | 5.00 | 89.08 | 0.00              | 0.79                 | CONC           | 0.01 | 0.37                          | 750.00 | 0.44           | 2.36      | 0.19      | 0.68              | 1.60 | 56.70  | 0.59                       | 698.240                 | 700.500 | 0.210      | 698.030 | 700.010 |
| 68                                      | AE_1                                                               | ST705C         | 0.80  | 0.53  | 8.00 | 73.94 | 0.09              | 0.09                 | PVC            | 0.01 | 0.50                          | 300.00 | 0.07           | 0.94      | 0.08      | 0.07              | 1.00 | 17.90  | 0.30                       | 698.550                 | 699.589 | 0.089      | 698.461 | 699.500 |
| (7                                      | ST/05C                                                             | ST705A         | 0.05  | 0.54  | 8.00 | 72.04 | 0.00              | 0.09                 | PVC            | 0.01 | 0.50                          | 300.00 | 0.07           | 0.94      | 0.08      | 0.07              | 1.00 | 23.80  | 0.40                       | 698.461                 | 699.500 | 0.118      | 698.343 | 699.800 |
| 67                                      | ST/05B                                                             | ST704 AF       | 0.05  | 0.54  | 8.00 | /3.94 | 0.01              | 0.09                 | PVC            | 0.01 | 0.67                          | 300.00 | 0.07           | 0.94      | 0.08      | 0.08              | 1.20 | 14.30  | 0.20                       | 698.343                 | 699.800 | 0.096      | 698.247 | 700.010 |
| 64                                      | AE 2                                                               | ST704_AE       | 0.01  | 0.93  | 5.00 | 89.08 | 0.00              | 0.03                 | PVC            | 0.01 | 0.25                          | 300.00 | 0.44           | 0.94      | 0.19      | 0.54              | 0.80 | 43.00  | 0.38                       | 600.066                 | 700.010 | 0.105      | 699.010 | 700.224 |
| 04                                      | ST704                                                              | ST704A         | 0.20  | 0.07  | 5.00 | 89.08 | 0.03              | 0.03                 | PVC            | 0.01 | 0.31                          | 300.00 | 0.07           | 0.94      | 0.08      | 0.05              | 0.80 | 56.10  | 1 17                       | 699.000                 | 700.031 | 0.030      | 698 835 | 700.373 |
| 77                                      | ST704A                                                             | ST704 AE       | 0.60  | 0.68  | 5.00 | 89.08 | 0.10              | 0.13                 | PVC            | 0.01 | 0.31                          | 375.00 | 0.11           | 1.18      | 0.09      | 0.10              | 0.90 | 51.20  | 0.95                       | 698.835                 | 700.400 | 0.160      | 698.675 | 700.224 |
| 78                                      | ST704 AF                                                           | ST703          | 4,50  | 0.69  | 5.00 | 89.08 | 0.77              | 1.79                 | CONC           | 0.01 | 0.26                          | 750.00 | 0.44           | 2.36      | 0.19      | 0.57              | 1.30 | 101.90 | 1.31                       | 697.905                 | 700.224 | 0.263      | 697.642 | 700.598 |
| 86                                      | ST703                                                              | ST702          | 0.01  | 0.95  | 5.00 | 89.08 | 0.00              | 2.35                 | CONC           | 0.01 | 0.03                          | 900.00 | 0.64           | 2.83      | 0.23      | 0.30              | 0.50 | 107.00 | 3.57                       | 697.542                 | 700.598 | 0.030      | 697.512 | 698.852 |
| 87                                      | ST702                                                              | ST701          | 0.70  | 0.60  | 5.00 | 89.08 | 0.10              | 2.45                 | CONC           | 0.01 | 0.23                          | 900.00 | 0.64           | 2.83      | 0.23      | 0.86              | 1.40 | 69.20  | 0.82                       | 697.511                 | 698.852 | 0.156      | 697.355 | 698.869 |
| 88                                      | ST701                                                              | Natural Area 2 | 0.04  | 0.69  | 5.00 | 89.08 | 0.01              | 2.46                 | CONC           | 0.01 | 0.23                          | 900.00 | 0.64           | 2.83      | 0.23      | 0.86              | 1.40 | 27.60  | 0.33                       | 697.354                 | 698.869 | 0.062      | 697.292 | 698.807 |
# APPENDIX D - PROPOSED UPGRADES TO EXISTING MINOR SYSTEM - DETAILED CALCULATIONS

|                | ASSOCIATED ENGINEERING ALBERTA LTD. |                |                    |        |     |               |                     |                     |      |               |       |              |      |                |           |           |        |          |                            |       |         |         |             |         |         |
|----------------|-------------------------------------|----------------|--------------------|--------|-----|---------------|---------------------|---------------------|------|---------------|-------|--------------|------|----------------|-----------|-----------|--------|----------|----------------------------|-------|---------|---------|-------------|---------|---------|
|                | MUNICIPAL ENGINEERING GROUP         |                |                    |        |     |               |                     |                     |      |               |       |              |      |                |           |           |        |          |                            |       |         |         |             |         |         |
|                | STORM SEWER DESIGN CHART            |                |                    |        |     |               |                     |                     |      |               |       |              |      |                |           |           |        |          |                            |       |         |         |             |         |         |
|                | KATIONAL METHOD FOR CIRCULAR PIPE   |                |                    |        |     |               |                     |                     |      |               |       |              |      |                |           |           |        |          |                            |       |         |         |             |         |         |
| LOCATION       | Edmonto                             | n 2018 (COE,   | ▼. 20 <sup>-</sup> | 18)    |     |               | INITIAL CONCE       | NTRATION TIM        | E    |               |       | COE Standard | min  | IDF PAI        | RAMETERS: |           |        |          |                            |       | DESIC   | NED BY  | Lisa Butler |         |         |
| CLIENT         | Town of B                           | on Accord      | ,                  | -      |     | RETURN PERIOI | )                   |                     |      | 5             | year  |              | a=   | 24.568         |           |           |        |          | REVISED BY Laurel Richards |       |         |         |             |         |         |
| PROJECT        | Stormwate                           | r Master Plan  |                    |        | _   |               |                     |                     |      |               |       |              |      |                | b=        | -0.735    | -      |          |                            |       |         | PAGE    | 1 OF        | 1       |         |
| PROJECT NO     | PROJECT NO. $2019-3459$ c= 0.0900   |                |                    |        |     |               |                     |                     |      |               |       |              |      |                | DA        | FE DESIGN | /CHECK | 5-Jul-19 |                            |       |         |         |             |         |         |
| CATCHMENT DATA |                                     |                |                    |        |     |               |                     |                     |      | E DESIGN DATA |       |              |      |                |           |           |        |          |                            |       |         |         |             |         |         |
| CATIONNER      |                                     |                |                    |        |     |               |                     |                     |      |               |       |              |      |                |           |           |        |          |                            |       | THETR   | JILL    |             |         |         |
|                |                                     |                |                    |        |     |               |                     |                     |      | n             | SLOPE | SIZE         | SIZE | FLOW           | WETTED    | HYDRAULIC | CAP.   | VEL.     | LENGTH                     | TIME  | UPSTRE  | EAM MH  | DROP        | DOWNST  | REAM MH |
| CATCHMEN       | FROM                                | ТО             | LOCAL              | RUNOFF | ,   | RAIN          | INCREMENTAL<br>FLOW |                     | PIPE |               |       |              |      |                |           |           |        |          |                            |       |         |         |             |         |         |
| NO.            | MH                                  | MH             | AREA               | COEFF  | TC  | INT.          | CIA*0.00278         | CUMULATIV           | TYPE |               |       |              |      | AREA           | PERIMETER | RADIUS    |        |          |                            | IN    | INVERT  | RIM     | IN          | INVERT  | RIM     |
|                |                                     |                | (A)                | (C)    |     | I             | 3.                  | E FLOW              |      |               |       |              |      | 2              |           |           | 2      |          |                            | PIPE  |         |         | PIPE        |         |         |
|                |                                     |                | ha                 |        | min | mm/hr         | m <sup>3</sup> /s   | (m <sup>3</sup> /s) |      |               | (%)   | mm           | mm   | m <sup>2</sup> | m         |           | m³/s   | m/s      | m                          | min   | m       | m       | m           | m       | m       |
| 94             | S703A                               | ST703          | 3.2                | 0.70   | 5   | 89.08         | 0.555               | 0.555               | PVC  | 0.013         | 0.03  | 1129         | 1129 | 1.001          | 3.547     | 0.282     | 0.56   | 0.60     | 98.6                       | 2.739 | 697.945 | 700.626 | 0.028       | 697.917 | 700.598 |
| 18             | ST715                               | ST714          | 0.7                | 0.73   | 5   | 89.08         | 0.127               | 0.127               | VCT  | 0.013         | 1.04  | 330          | 330  | 0.085          | 1.035     | 0.082     | 0.13   | 1.50     | 35.9                       | 0.399 | 699.510 | 702.440 | 0.375       | 699.135 | 702.880 |
| 17             | ST714                               | ST713          | 0.007              | 0.95   | 5   | 89.08         | 0.002               | 0.128               | VCT  | 0.013         | 0.29  | 423          | 423  | 0.140          | 1.328     | 0.106     | 0.13   | 1.00     | 10.4                       | 0.173 | 698.960 | 702.880 | 0.030       | 698.930 | 702.850 |
| 19             | ST713                               | ST712          | 0.009              | 0.95   | 5   | 89.08         | 0.002               | 0.130               | VCT  | 0.013         | 0.50  | 383          | 383  | 0.115          | 1.204     | 0.096     | 0.13   | 1.20     | 46.8                       | 0.65  | 698.930 | 702.850 | 0.233       | 698.697 | 700.410 |
| 21             | ST712A                              | ST712          | 0.1                | 0.76   | 5   | 89.08         | 0.019               | 0.019               | CONC | 0.013         | 1.13  | 200          | 200  | 0.031          | 0.628     | 0.050     | 0.03   | 1.20     | 30.4                       | 0.422 | 699.400 | 701.160 | 0.345       | 699.055 | 700.410 |
| 22             | ST712                               | ST710          | 0.05               | 0.94   | 5   | 89.08         | 0.012               | 0.161               | AC   | 0.013         | 0.63  | 750          | 750  | 0.442          | 2.356     | 0.188     | 0.88   | 2.00     | 49.3                       | 0.411 | 698.697 | 700.410 | 0.310       | 698.387 | 701.847 |
| 37             | ST711                               | ST710          | 2.0                | 0.64   | 5   | 89.08         | 0.317               | 0.317               | CONC | 0.013         | 0.04  | 864          | 864  | 0.586          | 2.713     | 0.216     | 0.32   | 0.60     | 56.8                       | 1.578 | 698.860 | 700.410 | 0.022       | 698.838 | 701.847 |
| 38             | ST710                               | ST709          | 0.1                | 0.65   | 5   | 89.08         | 0.016               | 0.494               | CONC | 0.013         | 0.08  | 890          | 890  | 0.621          | 2.795     | 0.222     | 0.50   | 0.90     | 53.1                       | 0.983 | 698.410 | 701.847 | 0.043       | 698.367 | 701.253 |
| 50             | ST709A                              | ST709          | 0.5                | 0.56   | 8   | 73.94         | 0.058               | 0.058               | CONC | 0.013         | 0.36  | 300          | 300  | 0.071          | 0.942     | 0.075     | 0.06   | 0.90     | 122.2                      | 2.263 | 698.267 | 700.810 | 0.434       | 697.833 | 701.253 |
| 51             | ST709                               | ST705          | 0.1                | 0.70   | 5   | 89.08         | 0.017               | 0.569               | CONC | 0.013         | 0.33  | 750          | 750  | 0.442          | 2.356     | 0.188     | 0.64   | 1.50     | 46.5                       | 0.517 | 698.385 | 701.253 | 0.155       | 698.230 | 700.500 |
| 55             | ST708                               | ST707          | 0.7                | 0.72   | 5   | 89.08         | 0.125               | 0.125               | CONC | 0.013         | 0.18  | 461          | 461  | 0.167          | 1.448     | 0.115     | 0.13   | 0.80     | 72.1                       | 1.502 | 698.990 | 700.370 | 0.131       | 698.859 | 700.680 |
| 54             | ST707                               | ST706          | 0.007              | 0.95   | 5   | 89.08         | 0.002               | 0.126               | CONC | 0.013         | 0.35  | 409          | 409  | 0.131          | 1.285     | 0.102     | 0.13   | 1.00     | 50.6                       | 0.843 | 698.839 | 700.680 | 0.175       | 698.664 | 700.180 |
| 53             | ST706                               | ST705          | 0.5                | 0.78   | 5   | 89.08         | 0.097               | 0.223               | CONC | 0.013         | 0.30  | 516          | 516  | 0.209          | 1.622     | 0.129     | 0.22   | 1.10     | 21.6                       | 0.327 | 698.644 | 700.180 | 0.064       | 698.580 | 700.500 |
| 52             | ST705                               | ST705A         | 0.007              | 0.95   | 5   | 89.08         | 0.002               | 0.793               | CONC | 0.013         | 0.37  | 798          | 798  | 0.500          | 2.507     | 0.200     | 0.80   | 1.60     | 56.7                       | 0.591 | 698.240 | 700.500 | 0.210       | 698.030 | 700.010 |
| 68             | AE_1                                | ST705C         | 0.8                | 0.53   | 8   | 73.94         | 0.087               | 0.087               | PVC  | 0.013         | 0.50  | 333          | 333  | 0.087          | 1.046     | 0.083     | 0.09   | 1.10     | 17.9                       | 0.271 | 698.550 | 699.589 | 0.089       | 698.461 | 699.500 |
|                | ST705C                              | ST705B         |                    |        |     |               | 0.000               | 0.087               | PVC  | 0.013         | 0.50  | 333          | 333  | 0.087          | 1.046     | 0.083     | 0.09   | 1.10     | 23.8                       | 0.361 | 698.461 | 699.500 | 0.118       | 698.343 | 699.800 |
| 67             | ST705B                              | ST705A         | 0.05               | 0.54   | 8   | 73.94         | 0.006               | 0.093               | PVC  | 0.013         | 0.67  | 319          | 319  | 0.080          | 1.002     | 0.080     | 0.09   | 1.20     | 14.3                       | 0.199 | 698.343 | 699.800 | 0.096       | 698.247 | 700.010 |
| 69             | ST705A                              | ST704_AE       | 0.007              | 0.95   | 5   | 89.08         | 0.002               | 0.888               | CONC | 0.013         | 0.23  | 906          | 906  | 0.645          | 2.846     | 0.226     | 0.89   | 1.40     | 45.0                       | 0.536 | 698.030 | 700.010 | 0.105       | 697.925 | 700.224 |
| 64             | AE_2                                | ST704          | 0.2                | 0.67   | 5   | 89.08         | 0.033               | 0.033               | PVC  | 0.013         | 0.31  | 300          | 300  | 0.071          | 0.942     | 0.075     | 0.05   | 0.80     | 17.8                       | 0.371 | 699.066 | 700.631 | 0.056       | 699.010 | 700.575 |
|                | ST704                               | ST704A         |                    |        |     |               | 0.000               | 0.033               | PVC  | 0.013         | 0.31  | 300          | 300  | 0.071          | 0.942     | 0.075     | 0.05   | 0.80     | 56.1                       | 1.169 | 699.010 | 700.575 | 0.175       | 698.835 | 700.400 |
| 77             | ST704A                              | ST704_AE       | 0.6                | 0.68   | 5   | 89.08         | 0.101               | 0.134               | PVC  | 0.013         | 0.31  | 422          | 422  | 0.140          | 1.327     | 0.106     | 0.13   | 1.00     | 51.2                       | 0.853 | 698.835 | 700.400 | 0.160       | 698.675 | 700.224 |
| 78             | ST704_AE                            | ST703          | 4.5                | 0.69   | 5   | 89.08         | 0.769               | 1.791               | CONC | 0.013         | 0.26  | 1158         | 1158 | 1.053          | 3.637     | 0.289     | 1.80   | 1.80     | 101.9                      | 0.944 | 697.905 | 700.224 | 0.263       | 697.642 | 700.598 |
| 86             | ST703                               | ST702          | 0.01               | 0.95   | 5   | 89.08         | 0.002               | 2.348               | CONC | 0.013         | 0.03  | 1940         | 1940 | 2.956          | 6.095     | 0.485     | 2.35   | 0.80     | 107.0                      | 2.229 | 697.542 | 700.598 | 0.030       | 697.512 | 698.852 |
| 87             | ST702                               | ST701          | 0.7                | 0.60   | 5   | 89.08         | 0.104               | 2.452               | CONC | 0.013         | 0.23  | 1343         | 1343 | 1.417          | 4.219     | 0.336     | 2.50   | 1.80     | 69.2                       | 0.641 | 697.511 | 698.852 | 0.156       | 697.355 | 698.869 |
| 88             | ST701                               | Natural Area 2 | 0.04               | 0.69   | 5   | 89.08         | 0.007               | 2.459               | CONC | 0.013         | 0.23  | 1335         | 1335 | 1.400          | 4.194     | 0.334     | 2.46   | 1.80     | 27.6                       | 0.256 | 697.354 | 698.869 | 0.062       | 697.292 | 698.807 |

# APPENDIX E - EXISTING MAJOR SYSTEM ASSESSMENT - DETAILED CALCULATIONS

| Contributing<br>Catchments      | C1   | C2   | С3    | C4   | С5   | A1      | A2         | A3    | A4    | A5        | С    | Length<br>(m) | Slope<br>(m/m) | Tc<br>(min) | I (mm/hr | ) Arc<br>(m | ea Area<br><sup>2</sup> ) (ha) | Incremental Design Flow<br>1:100 Year (m³/s) | Cumulative Design Flow<br>1:100 Year (m³/s) | Design Flow into Culvert<br>1:100 Year (m³/s) | Existing Culvert Size<br>(mm) | Full Flow Capacity of<br>Culvert<br>1:100 Year (m³/s) | Sufficient Capacity? | Proposed Size (mm) |
|---------------------------------|------|------|-------|------|------|---------|------------|-------|-------|-----------|------|---------------|----------------|-------------|----------|-------------|--------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------|-------------------------------------------------------|----------------------|--------------------|
| 16                              | 0.84 | 1    |       |      |      | 230     | <u>г г</u> |       |       |           | 0.84 | 24            | 0.04           | 5           | 188.51   | 23          | 0 0.02                         | 0.01                                         | 0.01                                        |                                               |                               |                                                       |                      |                    |
| Culvert 24                      | 1    | 1    |       |      | 1    | 1       |            |       |       | · · · · · |      |               |                |             | 1        | 1           |                                | 1                                            | 1                                           | 0.01                                          | 600                           | 0.05                                                  | Yes                  | N/A                |
| 12, 8                           | 0.91 | 0.85 |       |      | 1    | 14938   | 12114      |       |       |           | 0.88 | 299           | 0.05           | 5           | 188.39   | 270         | 52 2.71                        | 1.25                                         | 1.25                                        |                                               |                               |                                                       |                      |                    |
| Culvert 14                      |      |      |       |      |      |         |            |       |       |           |      |               |                | -           |          |             |                                |                                              | -                                           | 1.25                                          | 600                           | 0.23                                                  | No                   | 1200               |
| 9, 10<br>Culvert 13             | 0.84 | 0.68 |       |      |      | 1089    | 68172      |       |       |           | 0.68 | 23            | 0.01           | 8           | 161.01   | 692         | 6.93                           | 2.11                                         | 3.36                                        | 2.26                                          | 700                           | 0.25                                                  | No                   | 1650               |
| 11, 5                           | 0.78 | 0.69 |       |      |      | 7227    | 15555      |       |       |           | 0.72 | 300           | 0.05           | 5           | 187.78   | 227         | 82 2.28                        | 0.85                                         | 4.22                                        | 5.30                                          | /00                           | 0.55                                                  | NO                   | 1030               |
| Culvert 12                      | 0.04 | 0.50 | 0.22  | 0.62 |      | 1 1 2 2 | 1 402      | 10002 | 5170  |           | 0.42 | 22            | 0.01           | 0           | 161.01   | 1.166       | 05 1 67                        | 2 22E 01                                     | 1 1 5 1                                     | 4.22                                          | 600                           | 0.23                                                  | No                   | 1800               |
| Culvert 10                      | 0.64 | 0.38 | 0.55  | 0.02 |      | 122     | 462        | 10905 | 51/6  |           | 0.45 | 23            | 0.01           | 0           | 101.01   | 100         | 1.07                           | 5.22E-01                                     | 4.34                                        | 2.27                                          | 700                           | 0.20                                                  | No                   | 1800               |
| Culvert 11                      |      |      |       |      |      |         |            |       |       |           |      |               |                |             |          |             |                                |                                              |                                             | 2.27                                          | 700                           | 0.20                                                  | No                   | 1800               |
| 25.47                           | 0.77 | 0.77 |       |      | 1    | 2784    | 3976       |       | 1     |           | 0.77 | 248           | 0.04           | 5           | 188.51   | 676         | 60 0.68                        | 0.27                                         | 0.27                                        |                                               |                               |                                                       |                      |                    |
| Culvert 15                      |      |      |       |      |      |         |            |       |       |           |      |               |                |             |          |             |                                |                                              | , , ,                                       | 0.27                                          | 500                           | 0.23                                                  | No                   | 600                |
| 45, 39<br>Culvert 4             | 0.74 | 0.88 |       |      |      | 14484   | 524        |       |       |           | 0.74 | 276           | 0.04           | 5           | 188.29   | 150         | 08 1.50                        | 0.58                                         | 0.86                                        | 0.86                                          | 500                           | 0.22                                                  | No                   | 000                |
| 30, 29                          | 0.72 | 0.65 |       |      |      | 176     | 5605       |       |       |           | 0.65 | 130           | 0.05           | 8           | 161.01   | 578         | 81 0.58                        | 0.17                                         | 1.03                                        | 0.80                                          | 500                           | 0.25                                                  | NO                   | 900                |
| Culvert 2                       | 0.76 | 0.66 |       | 0.60 | 0.75 | 054     | 1 2022     | 2742  | 70190 | 10452     | 0.70 | 406           | 0.04           | 0           | 161.20   | 1.1041      | 161 10 42                      | 2.07                                         | 4.20                                        | 1.03                                          | 400                           | 0.13                                                  | No                   | 900                |
| 28, 27, 55, 24, 25<br>Culvert 1 | 0.76 | 0.00 | 0.00  | 0.69 | 0.75 | 934     | 2822       | 2743  | /9189 | 18433     | 0.70 | 490           | 0.04           | 8           | 101.29   | 1041        | 101 10.42                      | 5.27                                         | 4.29                                        | 4.29                                          | 500                           | 0.23                                                  | No                   | 1650               |
| 26, 32, 31, 36                  | 0.63 | 0.72 | 0.61  | 0.85 |      | 5033    | 280        | 988   | 459   |           | 0.65 | 145           | 0.05           | 8           | 161.01   | 676         | 60 0.68                        | 0.20                                         | 4.49                                        |                                               |                               |                                                       |                      |                    |
| Culvert 35                      |      |      |       |      |      |         |            |       |       |           |      |               |                |             |          |             |                                |                                              |                                             | 4.49                                          | 500                           | 0.23                                                  | No                   | 1650               |
| 82, 81, 80, 76                  | 0.68 | 0.7  | 0.13  | 0.53 |      | 8501    | 400        | 182   | 1295  |           | 0.65 | 162           | 0.05           | 8           | 161.01   | 103         | 78 1.04                        | 0.30                                         | 0.30                                        |                                               |                               |                                                       |                      |                    |
| Culvert 6<br>75-49              | 0.69 | 0.6  |       |      |      | 3894    | 1149       |       |       |           | 0.67 | 193           | 0.05           | 8           | 161.01   | 504         | 43 0 50                        | 0.15                                         | 0.45                                        | 0.30                                          | 600                           | 0.17                                                  | No                   | 750                |
| Culvert 5                       | 0.09 | 0.0  |       |      |      | 5071    | mo         |       |       |           | 0.07 | 175           | 0.05           | Ū           | 101.01   | 50          | 0.50                           | 0.15                                         | 0.15                                        | 0.45                                          | 400                           | 0.06                                                  | No                   | 900                |
| 46, 41                          | 0.92 | 0.9  |       |      |      | 679     | 657        |       |       |           | 0.91 | 70            | 0.08           | 5           | 188.51   | 133         | 36 0.13                        | 0.06                                         | 0.52                                        | 0.52                                          | 400                           | 0.00                                                  | λĭ                   | 1050               |
| 40, 43                          | 0.95 | 0.69 |       |      |      | 106     | 13125      |       |       |           | 0.69 | 294           | 0.06           | 8           | 161.01   | 132         | 31 1.32                        | 0.41                                         | 0.93                                        | 0.52                                          | 400                           | 0.06                                                  | No                   | 1050               |
| Culvert 36                      | 0.70 | 0.72 | 0.74  |      | 1    | 15(0    | 010        | 2507  |       |           | 0.76 | 142           | 0.00           | 5           | 100.51   | 1 000       |                                | 0.25                                         | 1.20                                        | 0.93                                          | 400                           | 0.06                                                  | No                   | 1200               |
| 42, 56, 44<br>Culvert 33        | 0.78 | 0.73 | 0.74  |      |      | 4569    | 818        | 3507  |       |           | 0.76 | 143           | 0.06           | 5           | 188.51   | 885         | 94 0.89                        | 0.35                                         | 1.28                                        | 1.28                                          | 600                           | 0.20                                                  | No                   | 1350               |
|                                 |      |      |       |      |      |         |            |       |       |           |      |               |                |             |          |             |                                |                                              |                                             | 1.20                                          | 000                           | 0.20                                                  | 110                  | 1550               |
| 85<br>Culvert 8                 | 0.9  |      |       |      |      | 238     |            |       |       |           | 0.90 | 25            | 0.07           | 5           | 188.51   | 23          | 0.02                           | 0.01                                         | 0.01                                        | 0.01                                          | 500                           | 0.20                                                  | Ves                  | N/A                |
| 99, 101                         | 0.95 | 0.95 |       |      |      | 342     | 4439       |       |       |           | 0.95 | 178           | 0.04           | 5           | 188.51   | 478         | 81 0.48                        | 0.24                                         | 0.24                                        | 0.01                                          | 500                           | 0.20                                                  | 105                  | 19/A               |
| Culvert 30                      | 0.81 | 0.36 |       |      | 1    | 26740   | 70156      |       |       |           | 0.48 | 444           | 0.04           | 8           | 164.55   | 068         | 06 0.60                        | 2 14                                         | 2.28                                        | 0.24                                          | 300                           | 0.05                                                  | No                   | 600                |
| Culvert 7                       | 0.01 | 0.30 |       |      |      | 20740   | /0150      |       |       |           | 0.48 | 444           | 0.04           | 0           | 104.55   | 908         | 90 9.09                        | 2.14                                         | 2.36                                        | 2.38                                          | 300                           | 0.05                                                  | No                   | 1350               |
| 100.09                          | 0.49 | 0.91 |       |      | 1    | 15492   | 12795      |       | 1 1   |           | 0.64 | 550           | 0.07           | 7           | 170.67   | 1 202       |                                | Λ 00                                         | 0.00                                        | -                                             |                               |                                                       |                      |                    |
| Culvert 20                      | 0.48 | 0.81 |       |      |      | 13482   | 13/83      |       |       |           | 0.04 | 330           | 0.07           | /           | 1/0.0/   | 292         | 2.93                           | 0.88                                         | 0.88                                        | 0.88                                          | 400                           | 0.16                                                  | No                   | 900                |
| Culvert 19                      |      |      |       |      |      |         |            |       |       |           |      |               |                |             |          |             |                                |                                              |                                             | 0.88                                          | 400                           | 0.16                                                  | No                   | 900                |
| 93, 95                          | 0.15 | 0.78 |       |      |      | 239     | 16201      |       |       |           | 0.77 | 439           | 0.03           | 8           | 162.99   | 164         | 40 1.64                        | 0.57                                         | 0.57                                        |                                               |                               |                                                       |                      |                    |
| Culvert 26                      |      |      |       |      |      |         | 10201      |       |       | I         | 0.,, | ,             | 0.00           |             |          |             |                                |                                              |                                             | 0.29                                          | 600                           | 0.53                                                  | Yes                  | N/A                |
| Culvert 21<br>92 104 20         | 0.13 | 0.14 | 0.125 |      |      | 261     | 557817     | 29870 |       |           | 0.14 | 1724          | 0.04           | 21          | 103.04   | 1 5870      | 948 58 70                      | 2 34                                         | 2.92                                        | 0.29                                          | 600                           | 0.53                                                  | Yes                  | N/A                |
| Culvert 16                      | 0.15 | 0.17 | 0.123 |      |      | 201     | 557017     | 27010 |       |           | 0.17 | 1/27          | 0.04           | <i>2</i> 1  | 105.04   | 5075        |                                | 2.57                                         | 2.72                                        | 2.92                                          | 600                           | 0.40                                                  | No                   | 1350               |
| 01 105                          | 0.87 | 0.60 |       |      |      | 274     | 287        |       |       |           | 0.76 | 55            | 0.03           | 5           | 199 51   | 66          | 1 0.07                         | 0.02                                         | 0.02                                        |                                               |                               |                                                       |                      |                    |
| Culvert 18                      | 0.07 | 0.09 |       |      | 1    | 2/4     | 507        |       | 1     |           | 0.70 | 55            | 0.05           | 5           | 100.51   | 1 00        | 0.07                           | 0.05                                         | 0.05                                        | 0.03                                          | 400                           | 0.13                                                  | Yes                  | N/A                |
| 90<br>Culuret 21                |      | 0.83 |       |      |      |         | 231        |       |       |           | 0.83 | 17            | 7              | 5.0         | 188.51   | 23          | 0.02                           | 0.01                                         | 0.04                                        | 0.04                                          | 400                           | 0.12                                                  | N/                   | N7/4               |
| 89. 84                          | 0.72 | 0.75 |       |      | 1    | 324     | 968        |       |       | T         | 0.74 | 56            | 0.05           | 5.0         | 188.51   | 129         | 92 0.13                        | 0.05                                         | 0.09                                        | 0.04                                          | 400                           | 0.13                                                  | Yes                  | N/A                |
| Culvert 32                      |      | 1    |       |      | 1    | -       |            |       |       | I         |      |               |                |             |          |             | 1                              | 1                                            |                                             | 0.16                                          | 400                           | 0.13                                                  | No                   | 450                |

Rational Method Calculations - Existing Major System

## APPENDIX F - FUTURE MAJOR SYSTEM ASSESSMENT - DETAILED CALCULATIONS

| Contributing<br>Catchments | C1     | C2 (      | C3 C     | 4 C5             | A1    | A2         | A3      | A4    | A5 C       | Length<br>(m) | n Slope<br>(m/m) ( | Tc<br>min) I (r | mm/hr) | Area<br>(m²) | Area<br>(ha) | Incremental Design Flow<br>1:100 Year (m³/s) | Cumulative Design Flow<br>1:100 Year (m³/s) | Design Flow into Culvert<br>1:100 Year (m³/s) | Existing Culvert Size (mm) | Full Flow Capacity of Culvert<br>1:100 Year (m³/s) | Sufficient Capacity? | Proposed Size (mm) |
|----------------------------|--------|-----------|----------|------------------|-------|------------|---------|-------|------------|---------------|--------------------|-----------------|--------|--------------|--------------|----------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------|----------------------------------------------------|----------------------|--------------------|
| 16                         | 0.94   |           |          |                  | 220   |            |         |       |            | 41 24         |                    | 5 1 1           | 99.51  | 220          |              | 0.01                                         | 0.01                                        | · · · ·                                       |                            |                                                    |                      |                    |
| 16<br>Culvert 24           | 0.84   |           |          |                  | 230   |            |         |       | 0.84       | 4 24          | 0.04               | 5 1             | 88.51  | 230          | 0.02         | 0.01                                         | 0.01                                        | 0.01                                          | 600                        | 0.05                                               | Vac                  | NI/A               |
| Curvent 21                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              | I                                           | 0.01                                          | 000                        | 0.05                                               | 105                  | IN/A               |
| 12, 8                      | 0.91 ( | 0.85      |          |                  | 14938 | 12114      |         |       | 0.88       | 8 299         | 0.05               | 5 1             | 88.39  | 27052        | 2.71         | 1.25                                         | 1.25                                        |                                               |                            |                                                    |                      |                    |
| Culvert 14                 | 108410 | 0.68      |          |                  | 1080  | 68172      |         |       | 10.69      | 21 23         | 0.01               | 8 1 1           | 61.01  | 60261        | 603          | 2 1 1                                        | 3 36                                        | 1.25                                          | 1200                       | 1.48                                               | Yes                  | N/A                |
| Culvert 13                 | 0.04   | 0.00      |          |                  | 1009  | 08172      |         |       | 0.00       | 5 25          | 0.01               | 0 1             | 01.01  | 09201        | 0.95         | 2.11                                         | 5.50                                        | 3 36                                          | 1650                       | 3 46                                               | Yes                  | N/A                |
| 11, 5                      | 0.78 0 | 0.69      |          |                  | 7227  | 15555      |         |       | 0.72       | 2 300         | 0.05               | 5 1             | 87.78  | 22782        | 2.28         | 0.85                                         | 4.22                                        | 5150                                          | 1000                       | 5110                                               | 105                  |                    |
| Culvert 12                 |        |           |          | -                | 100   | 100        | 0000    | 5150  |            |               |                    |                 | (1.01  | 1.((0.5      |              |                                              | 4.50                                        | 4.22                                          | 1800                       | 4.36                                               | Yes                  | N/A                |
| 6, 7, 13, 14<br>Culvert 10 | 0.85 0 | 0.63 0    | 0.6 0.1  | /3               | 122   | 482 1      | 0903    | 5178  | 0.64       | 4 23          | 0.01               | 8 1             | 61.01  | 16685        | 1.67         | 4.80E-01                                     | 4.70                                        | 2.25                                          | 1800                       | 2.47                                               | Vac                  | NI/A               |
| Culvert 11                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 2.35                                          | 1800                       | 2.47                                               | Yes                  | N/A<br>N/A         |
|                            |        |           |          |                  |       |            |         |       |            |               |                    |                 |        | /= / 0       |              |                                              |                                             |                                               |                            |                                                    |                      |                    |
| 25, 47<br>Culvert 15       | 0.77   | 0.77      |          |                  | 2784  | 3976       |         |       | 0.7        | 7 248         | 0.04               | 5 1             | 88.51  | 6760         | 0.68         | 0.27                                         | 0.27                                        | 0.27                                          | (00                        | 0.27                                               | V                    | NT/A               |
| 45.39                      | 0.74 0 | 0.88      |          |                  | 14484 | 524        |         |       | 0.74       | 4 276         | 0.04               | 5 1             | 88.29  | 15008        | 1.50         | 0.58                                         | 0.86                                        | 0.27                                          | 600                        | 0.37                                               | Yes                  | IN/A               |
| Culvert 4                  |        |           |          |                  |       |            |         |       | ,          |               | 0.0.1              |                 |        |              |              |                                              |                                             | 0.86                                          | 900                        | 1.09                                               | Yes                  | N/A                |
| 30, 29                     | 0.72 0 | 0.65      |          |                  | 176   | 5605       |         |       | 0.65       | 5 130         | 0.05               | 8 1             | 61.01  | 5781         | 0.58         | 0.17                                         | 1.03                                        |                                               |                            |                                                    |                      |                    |
| Culvert 2                  |        | 0.66 0    | 66 0     | <u>69   0 75</u> | 954   | 2822       | 2743    | 79189 | 18453 0 70 | 1 496         | 0.04               | 8 1             | 61.29  | 104161       | 10.42        | 3 27                                         | 4 29                                        | 1.03                                          | 900                        | 1.09                                               | Yes                  | N/A                |
| Culvert 1                  | 0.70   | 0.00 0    | .00   0. | 0.75             | 754   | 2022       | 2745    | //10/ | 10455 0.70 | 5 470         | 0.04               | 0 1             | 01.27  | 104101       | 10.42        | 5.21                                         | 7.27                                        | 4.29                                          | 1650                       | 5.5                                                | Yes                  | N/A                |
| 26, 32, 31, 36             | 0.63 0 | 0.72 0    | .61 0.3  | 85               | 5033  | 280        | 988     | 459   | 0.65       | 5 145         | 0.05               | 8 1             | 61.01  | 6760         | 0.68         | 0.20                                         | 4.49                                        |                                               |                            |                                                    |                      |                    |
| Culvert 35                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 4.49                                          | 1650                       | 5.5                                                | Yes                  | N/A                |
| 82, 81, 80, 76             | 0.68   | 0.7   0   | 13 0.:   | 53               | 8501  | 400        | 182     | 1295  | 0.65       | 5 162         | 0.05               | 8 1             | 61.01  | 10378        | 1.04         | 0.30                                         | 0.30                                        |                                               |                            |                                                    |                      |                    |
| Culvert 6                  |        |           |          |                  |       |            | -       |       |            |               |                    |                 |        |              |              |                                              |                                             | 0.30                                          | 750                        | 0.31                                               | Yes                  | N/A                |
| 75, 49                     | 0.69   | 0.6       |          |                  | 3894  | 1149       |         |       | 0.67       | 7 193         | 0.05               | 8 1             | 61.01  | 5043         | 0.50         | 0.15                                         | 0.45                                        |                                               |                            |                                                    |                      |                    |
| Culvert 5<br>46_41         | 0.92   | 09        |          | -                | 679   | 657        |         |       | 0.9        | 1 70          | 0.08               | 5   1           | 88 51  | 1336         | 013          | 0.06                                         | 0.52                                        | 0.45                                          | 900                        | 0.5                                                | Yes                  | N/A                |
| Culvert 3                  | 0.72   | 0.9       |          |                  | 017   | 057        |         |       | 0.7        | 1 /0          | 0.00               | 5 1             | .00.51 | 1550         | 0.15         | 0.00                                         | 0.52                                        | 0.52                                          | 1050                       | 0.76                                               | Yes                  | N/A                |
| 40, 43                     | 0.95 0 | 0.69      |          |                  | 106   | 13125      |         |       | 0.69       | 9 294         | 0.06               | 8 1             | 61.01  | 13231        | 1.32         | 0.41                                         | 0.93                                        |                                               |                            |                                                    |                      |                    |
| Culvert 36                 |        | 073 0     | 74       |                  | 4569  | 818        | 3507    |       | 0.76       | 5 143         | 0.06               | 5 1 1           | 88 51  | 8894         | 0.89         | 0.35                                         | 1.28                                        | 0.93                                          | 1200                       | 1.09                                               | Yes                  | N/A                |
| Culvert 33                 | 0.70   | 0.75 0    | ./+      |                  | 4507  | 010        | 5507    |       | 0.70       | 5 145         | 0.00               | 5 1             | 00.51  | 0074         | 0.07         | 0.55                                         | 1.20                                        | 1.28                                          | 1350                       | 1.73                                               | Yes                  | N/A                |
|                            |        |           |          |                  |       |            |         | , ,   | 1          |               |                    |                 |        |              |              |                                              |                                             |                                               |                            |                                                    |                      |                    |
| 85<br>Culvert 8            | 0.9    |           |          |                  | 238   |            |         |       | 0.90       | ) 25          | 0.07               | 5 1             | 88.51  | 238          | 0.02         | 0.01                                         | 0.01                                        | 0.01                                          | 500                        | 0.20                                               | Var                  | NT/A               |
| 99, 101                    | 0.95 0 | 0.95      |          |                  | 342   | 4439       |         |       | 0.95       | 5 178         | 0.04               | 5 1             | 88.51  | 4781         | 0.48         | 0.24                                         | 0.24                                        | 0.01                                          | 500                        | 0.20                                               | Yes                  | IN/A               |
| Culvert 30                 |        |           |          |                  | ÷ · = |            |         | II    | 0.54       |               |                    |                 |        | .,           | 0110         | •· ·                                         |                                             | 0.24                                          | 600                        | 0.31                                               | Yes                  | N/A                |
| 96, 74                     | 0.81 ( | 0.36      |          |                  | 26740 | 70156      |         |       | 0.48       | 8 444         | 0.04               | 8 1             | 64.55  | 96896        | 9.69         | 2.14                                         | 2.38                                        |                                               | 1050                       | 2.65                                               |                      | 27/4               |
|                            |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 2.38                                          | 1350                       | 2.65                                               | Yes                  | N/A                |
| 100, 98                    | 0.84 0 | 0.91      |          |                  | 15482 | 13785      |         |       | 0.87       | 7 550         | 0.07               | 7 1             | 70.67  | 29267        | 2.93         | 1.21                                         | 1.21                                        |                                               |                            |                                                    |                      |                    |
| Culvert 20                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 1.21                                          | 900                        | 1.36                                               | Yes                  | N/A                |
| Culvert 19                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 1.21                                          | 900                        | 1.36                                               | Yes                  | N/A                |
| 93, 95                     | 0.75 0 | 0.78      |          |                  | 239   | 16201      |         |       | 0.78       | 8 439         | 0.03               | 8 1             | 62.99  | 16440        | 1.64         | 0.58                                         | 0.58                                        |                                               |                            |                                                    |                      |                    |
| Culvert 26                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 0.29                                          | 600                        | 0.53                                               | Yes                  | N/A                |
| Culvert 21                 | 0.75 0 | 0.65   0  | 125      |                  | 261 4 | 557017 200 | 260 508 |       | 0.6        | 1724          | 0.04               | 21 1            | 02.04  | 507010       | 59 70 1      | 10.40                                        | 11.07                                       | 0.29                                          | 600                        | 0.53                                               | Yes                  | N/A                |
| 52, 104, 20<br>Culvert 16  | 0.75   | J.UJ   U. | 123      |                  | 201 3 | 298        | 509.508 |       | 0.04       | - 1/24        | 0.04               | 21 1            | 03.04  | 501940       | 30.19        | 10.49                                        | 11.0/                                       | 11.07                                         | 1350                       | 0.40                                               | No                   | 3 1500 mm dia      |
|                            |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             |                                               |                            |                                                    | 110                  | 2 1000 1111 010    |
| 91, 105                    | 0.87 ( | 0.69      |          |                  | 274   | 387        |         |       | 0.76       | 5 55          | 0.03               | 5 1             | 88.51  | 661          | 0.07         | 0.03                                         | 0.03                                        | 0.02                                          | 400                        | 0.12                                               | V                    | NT/ 4              |
| 90                         | 0.83   | - 1       |          |                  | 231   |            |         |       | 0.83       | 3 17          | 7                  | 5.0   1         | 88.51  | 231          | 0.02         | 0.01                                         | 0.04                                        | 0.03                                          | 400                        | 0.13                                               | Yes                  | N/A                |
| Culvert 31                 |        |           |          |                  |       |            |         |       | 510.       | /             |                    |                 |        |              |              |                                              |                                             | 0.04                                          | 400                        | 0.13                                               | Yes                  | N/A                |
| 89, 84                     | 0.72 0 | 0.75      |          |                  | 324   | 968        |         |       | 0.74       | 4 56          | 0.05               | 5.0 1           | 88.51  | 1292         | 0.13         | 0.05                                         | 0.09                                        | 0.1(                                          | 450                        | 0.17                                               | X/                   | NY/ 4              |
| Curvert 32                 |        |           |          |                  |       |            |         |       |            |               |                    |                 |        |              |              |                                              |                                             | 0.16                                          | 450                        | 0.17                                               | Yes                  | N/A                |

Rational Method Calculations - Future Major System

### **APPENDIX G - PRELIMINARY COST ESTIMATE**

#### Preliminary Cost Estimate

| Item No.                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quantity     | Unit   | Un    | it Price | I         | Extension |  |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-------|----------|-----------|-----------|--|--|--|--|--|--|--|
| Proposed Minor System Upgrades  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |       |          |           |           |  |  |  |  |  |  |  |
| 1.0                             | Remove and Replace Existing Storm Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |        |       |          |           |           |  |  |  |  |  |  |  |
| 1.1                             | S703A to ST703 (1200 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99           | m      | \$    | 1,500    | \$        | 148,000   |  |  |  |  |  |  |  |
| 1.2                             | ST715 to ST714 (375 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36           | m      | \$    | 1,500    | \$        | 54,000    |  |  |  |  |  |  |  |
| 1.3                             | ST714 to ST713 (450 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10           | m      | \$    | 1,500    | \$        | 16,000    |  |  |  |  |  |  |  |
| 1.4                             | ST713 to ST712 (450 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47           | m      | \$    | 1,500    | \$        | 71,000    |  |  |  |  |  |  |  |
| 1.5                             | ST711 to ST710 (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57           | m      | \$    | 1,500    | \$        | 86,000    |  |  |  |  |  |  |  |
| 1.6                             | ST710 to ST709 (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53           | m      | \$    | 1,500    | \$        | 80,000    |  |  |  |  |  |  |  |
| 1.7                             | ST708 to ST707 (525 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72           | m      | \$    | 1,500    | \$        | 109,000   |  |  |  |  |  |  |  |
| 1.8                             | ST707 to ST706 (450 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51           | m      | \$    | 1,500    | \$        | 76,000    |  |  |  |  |  |  |  |
| 1.9                             | ST706 to ST705 (525 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22           | m      | \$    | 1,500    | \$        | 33,000    |  |  |  |  |  |  |  |
| 1.10                            | ST705 to ST705A (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57           | m      | \$    | 1,500    | \$        | 86,000    |  |  |  |  |  |  |  |
| 1.11                            | AE_1 to ST705C (375 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18           | m      | \$    | 1,500    | \$        | 27,000    |  |  |  |  |  |  |  |
| 1.12                            | ST705C to ST705B (375 m diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24           | m      | \$    | 1,500    | \$        | 36,000    |  |  |  |  |  |  |  |
| 1.13                            | ST705B to ST705A (375 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14           | m      | \$    | 1,500    | \$        | 22,000    |  |  |  |  |  |  |  |
| 1.14                            | ST705A to ST704_AE (1050 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45           | m      | \$    | 1,500    | \$        | 68,000    |  |  |  |  |  |  |  |
| 1.15                            | ST704A to ST704_AE (450 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51           | m      | \$    | 1,500    | \$        | 77,000    |  |  |  |  |  |  |  |
| 1.16                            | ST704_AE to ST703 (1200 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102          | m      | \$    | 1,500    | \$        | 153,000   |  |  |  |  |  |  |  |
| 1.17                            | ST703 to ST702 (1950 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107          | m      | \$    | 1,500    | \$        | 161,000   |  |  |  |  |  |  |  |
| 1.18                            | ST702 to ST701 (1350 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69           | m      | \$    | 1,500    | \$        | 104,000   |  |  |  |  |  |  |  |
| 1.19                            | ST701 to Natural Area 2 (1350 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28           | m      | \$    | 1,500    | \$        | 42,000    |  |  |  |  |  |  |  |
|                                 | Sub-Total - Propose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed Existing  | g Mino | or U  | pgrades  | \$        | 1,450,000 |  |  |  |  |  |  |  |
| Proposed 1                      | Major System Upgrades                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |        |       |          |           |           |  |  |  |  |  |  |  |
| 2.0                             | Remove and Replace Existing Culverts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |        |       |          |           |           |  |  |  |  |  |  |  |
| 2.1                             | Culvert 14 (1200 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23           | m      | \$    | 1,500    | \$        | 34,000    |  |  |  |  |  |  |  |
| 2.2                             | Culvert 13 (1650 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19           | m      | \$    | 1,500    | \$        | 29,000    |  |  |  |  |  |  |  |
| 2.3                             | Culvert 12 (1800 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13           | m      | \$    | 1,500    | \$        | 20,000    |  |  |  |  |  |  |  |
| 2.4                             | Culvert 10 (1800 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8            | m      | \$    | 1,500    | \$        | 13,000    |  |  |  |  |  |  |  |
| 2.5                             | Culvert 11 (1800 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8            | m      | \$    | 1,500    | \$        | 13,000    |  |  |  |  |  |  |  |
| 2.6                             | Culvert 15 (600 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19           | m      | \$    | 1,500    | \$        | 29,000    |  |  |  |  |  |  |  |
| 2.7                             | Culvert 4 (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13           | m      | \$    | 1,500    | \$        | 20,000    |  |  |  |  |  |  |  |
| 2.8                             | Culvert 2 (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18           | m      | \$    | 1,500    | \$        | 28,000    |  |  |  |  |  |  |  |
| 2.9                             | Culvert 1 (1650 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17           | m      | \$    | 1,500    | \$        | 26,000    |  |  |  |  |  |  |  |
| 3.0                             | Culvert 35 (1650 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20           | m      | \$    | 1,500    | \$        | 31,000    |  |  |  |  |  |  |  |
| 3.1                             | Culvert 6 (750 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12           | m      | \$    | 1,500    | \$        | 18,000    |  |  |  |  |  |  |  |
| 3.2                             | Culvert 5 900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7            | m      | \$    | 1,500    | \$        | 11,000    |  |  |  |  |  |  |  |
| 3.3                             | Culvert 3 (1050 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23           | m      | \$    | 1,500    | \$        | 34,000    |  |  |  |  |  |  |  |
| 3.4                             | Culvert 36 (1200 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20           | m      | \$    | 1,500    | \$        | 30,000    |  |  |  |  |  |  |  |
| 3.5                             | Culvert 33 (1350 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17           | m      | \$    | 1,500    | \$        | 25,000    |  |  |  |  |  |  |  |
| 3.6                             | Culvert 30 (600 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81           | m      | \$    | 1,500    | \$        | 121,000   |  |  |  |  |  |  |  |
| 3.7                             | Culvert / (1350 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13           | m      | \$    | 1,500    | \$        | 21,000    |  |  |  |  |  |  |  |
| 3.8                             | Culvert 20 (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26           | m      | \$    | 1,500    | \$        | 39,000    |  |  |  |  |  |  |  |
| 3.9                             | Culvert 19 (900 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33           | m      | \$    | 1,500    | \$        | 49,000    |  |  |  |  |  |  |  |
| 4.0                             | $\frac{1}{1} \frac{1}{1} \frac{1}$ | 13           | m      | \$    | 1,500    | \$        | 20,000    |  |  |  |  |  |  |  |
| 4.1                             | Cuivert 32 (450 mm diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | m      | ۵<br> | 1,500    | <u></u> Ф | 15,000    |  |  |  |  |  |  |  |
|                                 | Sub-1 otal - Propos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ed Existing  | g Majo | or U  | pgrades  | \$<br>\$  | 2 080 000 |  |  |  |  |  |  |  |
|                                 | I otal - Proposed Existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wing and 1 C |        | or U  | pgrades  | \$<br>¢   | 2,080,000 |  |  |  |  |  |  |  |
|                                 | Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing and Co   | onting | enc   | y (50%)  | \$        | 1,040,000 |  |  |  |  |  |  |  |
| Preliminary Cost Estimate Total |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |       |          |           |           |  |  |  |  |  |  |  |